• Title/Summary/Keyword: Pyrotechnically Actuated Device

Search Result 3, Processing Time 0.019 seconds

Parametric Analysis and Design Optimization of a Pyrotechnically Actuated Device

  • Han, Doo-Hee;Sung, Hong-Gye;Jang, Seung-Gyo;Ryu, Byung-Tae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.409-422
    • /
    • 2016
  • A parametric study based on an unsteady mathematical model of a pyrotechnically actuated device was performed for design optimization. The model simulates time histories for the chamber pressure, temperature, mass transfer and pin motion. It is validated through a comparison with experimentally measured pressure and pin displacement. Parametric analyses were conducted to observe the detailed effects of the design parameters using a validated performance analysis code. The detailed effects of the design variables on the performance were evaluated using the one-at-a-time (OAT) method, while the scatter plot method was used to evaluate relative sensitivity. Finally, the design optimization was conducted by employing a genetic algorithm (GA). Six major design parameters for the GA were chosen based on the results of the sensitivity analysis. A fitness function was suggested, which included the following targets: minimum explosive mass for the uniform ignition (small deviation), light casing weight, short operational time, allowable pyrotechnic shock force and finally the designated pin kinetic energy. The propellant mass and cross-sectional area were the first and the second most sensitive parameters, which significantly affected the pin's kinetic energy. Even though the peak chamber pressure decreased, the pin kinetic energy maintained its designated value because the widened pin cross-sectional area induced enough force at low pressure.

A Study on Analytical Approach for Performance Evaluation of Pyrotechnically Actuated Device (파이로작동기구 성능평가를 위한 해석모델 연구)

  • Choi, Joo-Ho;Sung, Hong-Gye;Kim, Jun-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.63-64
    • /
    • 2012
  • A pyrotechnic actuated device (PAD) is a component that delivers high power in remote environments by combustion of a self-contained energy source. Historically, the design of these devices has been largely empirical and considered to be an art. In this study, an overview for developing an analytical model is introduced that efficiently evaluates performance of PAD. The model is integrated by three parts of different disciplines that are coupled in sequence with each other. First is the solid explosive burning to form product gas within an actuator and transport to an expansion chamber. Second is the insertion of initially tapered piston into a small hole by gas pressure in the chamber. Third is the shear cutting of the diaphragm from the piston to enable gas flow into the conduit. Some results of preliminary study for each of three parts are introduced in the presentation.

  • PDF

Probabilistic Calibration of Computer Model and Application to Reliability Analysis of Elasto-Plastic Insertion Problem (컴퓨터모델의 확률적 보정 및 탄소성 압착문제의 신뢰도분석 응용)

  • Yoo, Min Young;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1133-1140
    • /
    • 2013
  • A computer model is a useful tool that provides solution via physical modeling instead of expensive testing. In reality, however, it often does not agree with the experimental data owing to simplifying assumption and unknown or uncertain input parameters. In this study, a Bayesian approach is proposed to calibrate the computer model in a probabilistic manner using the measured data. The elasto-plastic analysis of a pyrotechnically actuated device (PAD) is employed to demonstrate this approach, which is a component that delivers high power in remote environments by the combustion of a self-contained energy source. A simple mathematical model that quickly evaluates the performance is developed. Unknown input parameters are calibrated conditional on the experimental data using the Markov Chain Monte Carlo algorithm, which is a modern computational statistics method. Finally, the results are applied to determine the reliability of the PAD.