• Title/Summary/Keyword: Pyrotechnic

Search Result 84, Processing Time 0.023 seconds

EMC Safety Margin Verification for GEO-KOMPSAT Pyrotechnic Systems

  • Koo, Ja-Chun
    • International Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • Pyrotechnic initiators provide a source of pyrotechnic energy used to initiate a variety of space mechanisms. Pyrotechnic systems build in electromagnetic environment that may lead to critical or catastrophic hazards. Special precautions are need to prevent a pulse large enough to trigger the initiator from appearing in the pyrotechnic firing circuits at any but the desired time. The EMC verification shall be shown by analysis or test that the pyrotechnic systems meets the requirements of inadvertent activation. The MIL-STD-1576 and two range safeties, AFSPC and CSG, require the safety margin for electromagnetic potential hazards to pyrotechnic systems to a level at least 20 dB below the maximum no-fire power of the EED. The PC23 is equivalent to NASA standard initiator and the 1EPWH100 squib is ESA standard initiator. This paper verifies the two safety margins for electromagnetic potential hazards. The first is verified by analyzing against a RF power. The second is verified by testing against a DC current. The EMC safety margin requirement against RF power has been demonstrated through the electric field coupling analysis in differential mode with 21 dB both PC23 and 1EPWH100, and in common mode with 58 dB for PC23 and 48 dB for 1EPWH100 against the maximum no-fire power of the EED. Also, the EMC safety margin requirement against DC current has been demonstrated through the electrical isolation test for the pyrotechnic firing circuits with greater than 20 dB below the maximum no-fire current of the EED.

A Pyrotechnic Mixture Composition and Design Verification of Bright Flash (파이로테크닉 고섬광 발생장치 조성설계 및 설계검증)

  • Kim, Hyung Jun;Choi, Sung Wook;Kwon, Mi Ra;Hwang, Jun Sik;Chang, Kwe Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.289-295
    • /
    • 2014
  • The composition of bright flash device is a pyrotechnic mixture consisting of metal powder, oxidizer and additives. A pyrotechnic mixture of bright flash device generates a bright flash through burning after being ignited by initiator. The function of bright flash is to distract or incapacitate electro optical sensor systems and enemy eyes temporally. This study is to develop composition of pyrotechnic mixture of bright flash and to analyze the test results by considering intensity and efficiency of light.

A Study on Shock Transmission of Pyrotechnic Initiator (격벽착화기 내 충격 전달에 관한 연구)

  • Kim, Bohoon;Kim, Minsung;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.223-226
    • /
    • 2015
  • A pyrotechnic system that consists of donor/acceptor pair separated by a gap relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and acceptor charges. We apply a level-set based multimaterial hydrocode with reactive flow models for pentolite donor and heavily aluminized RDX as acceptor charge. The complex shock interaction, critical gap thickness, acoustic impedance, and go/no-go characteristics of the pyrotechnic system are quantitatively investigated.

  • PDF

A Design of Fire-Command Synchronous Satellite Pyrotechnic Circuit (점화 명령에 동조된 인공위성 파이로테크닉 회로 설계)

  • Koo, Ja Chun;Ra, Sung Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.81-92
    • /
    • 2013
  • The satellite includes many release mechanisms such as solar array deployment, antenna deployment, cover to protect contamination in scientific equipment, pyro value of the propulsion subsytem, and bypass device in Li-Ion cell module. A drive the initiators is a critical to the successful mission because the initiators of release mechanism driving by the pyrotechnic circuit is operated in single short. The pyrotechnic circuit has to provide switching network for safety. A typical switching network has defect consisting of high current rating fire switch to handle switching transient current during fire the initiator. The pyrotechnic circuit is required some form of power conditioning to reduce the peak power demanded from the bus if the initiators are to be fired from the main bus. This paper design a pyrotechnic circuit synchronized to the fire-command to activate the fire switch to overcome use high current rating fire switch to handle switching transient current during fire the initiator. The pyrotechnic circuit provides a current limited widow pulse for fire current synchronized to the fire-command to insure that fire switch will only carry the current but never switch it. The current limited widow pulse for fire current can be possible to use low current rating and light mass switch in switching network. The current limit function in the pyrotechnic circuit reduces supply voltage to initiator and provides the effect of power conditioning function to reduce peak bus power. The pyrotechnic circuit to apply satellite development on geostationary orbit is verified the function by test in development model.

The Application of Pyrotechnic Shock in Korean Aerospace Program (한국 우주개발분야의 충격시험 적용사례)

  • Lee, Sang-Seol;Kim, Hong-Bae;Moon, Sang-Mu;Woo, Sung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1161-1168
    • /
    • 2000
  • The tenn "Pyrotechnic Shock" or "Pyroshock" is used to describe short duration, high amplitude and high frequency transient structural responses in aerospace vehicle structures..The transients are generally initiated by firing of an ordnance item to separate or release a structural member of fastener. The objective of this paper is to present a set of pyrotechnic shock environment information - specific characteristics induced by many separation devices, prediction, testing, measurement and analysis methods of pyroshock environment. In addition, it is introduced the application of pyrotechnic shock test in Korean aerospace development program.

  • PDF

Bolt Loosening Analysis under Transverse Vibration for Design of Reliable Pyrotechnic Separation Nut (신뢰성 있는 파이로테크닉 분리 너트 설계를 위한 진동 시 볼트 풀림 해석)

  • Choi, Jae Young;Woo, Jeongmin;Kang, Dahoon;Kim, Jeong Ho;Cho, Jin Yeon;Jang, Seung-gyo;Yang, Hee Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1004-1011
    • /
    • 2018
  • Recently, pyrotechnic separation nut has attracted a considerable attention because of its shock reduction effect among various pyrotechnic mechanical devices. However, its bolt loosening behavior under transverse vibration has not been studied sufficiently, since segmented nuts are utilized instead of conventional nut in pyrotechnic separation nut. With the background, bolt loosening analyses are carried out referring to Junker vibration test. The analysis procedure consists of two steps. The first step is the bolt fastening step, screwing the bolt by fastening torque. The second step is the bolt loosening step under transverse vibration. Through the procedure, bolt loosening behaviors are obtained, and the effect of clearance on loosening behavior is closely investigated for reliable design of pyrotechnic separation nut.

Pyroshock Measurement and Characteristic Analysis of Explosive Bolt and Pyrotechnic Initiator (폭발볼트와 착화기의 파이로충격 계측 및 특성 분석)

  • Lee, Juho;Hwang, Dae-Hyun;Jang, Jae-Kyeong;Lee, YeungJo;Kim, Dong-Jin;Lee, Jung-Ryul;Han, Jae-Hung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.213-220
    • /
    • 2017
  • Pyroshock produced by the pyrotechnic devices can induce failures in nearby electronic devices. To handle and mitigate pyroshock inducing problems, appropriate measurement of pyroshock is essential. In this study, pyroshock measurement technique is established using laser Dopper vibrometers (LDVs) and shock accelerometers. Pyroshock produced by the explosive bolts and the pyrotechnic initiators under various environments is measured. The characteristics of pyroshock including the effects of supporting structures, propagation form on thin plate, sensor (contact and non-contact) types are discussed.

Effect of Ignition Delay Time Gap on the Linked Pyrotechnic Thrusters (파이로추력기의 점화시간차 영향)

  • Kim, Ki-Un;Jeon, In-Soo;Ahn, Sung-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.154-159
    • /
    • 2011
  • The effect of the ignition delay time gap is newly studied. The operational characteristics of the linked two pyrotechnic thrusters are affected by the time gap. Although two thrusters are simultaneously ignited, the time at which the pressure starts to rise in each thruster may not be synchronized. The characteristic of the system with the time gap is compared with that of the fully synchronized system without any time gap. Depending upon the magnitude of the time gap, the pressure-time profile and the ballistic performance are different. When two pyrotechnic thrusters have a time gap, the peak pressure of one thruster(in which the pressure is built up earlier) is increased and the other is decreased. As the time gap is increased, the peak pressure is converged into the maximum pressure. This maximum pressure can be obtained when only one thruster is activated. Because the maximum pressure is bounded, it is predicted that there isn't any catastrophic failures in the considered system. When the time gap is relatively small, the impulse of the combined force acting on the moving body is almost maintained. But the ballistic performance of the system with a large time gap should be carefully estimated because the reduction of the ballistic performance should not be easily neglected.

Modeling and Simulation of a Shape Memory Release Device (형상기억합금을 이용한 분리장치의 모델 및 모사에 관한 연구)

  • Lee, Yeung-Jo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.99-108
    • /
    • 2006
  • Aerospace applications use pyrotechnic devices with many different functions. Functional shock, safety, overall system cost issue, and availability of new technologies, however, question the continued use of these mechanisms on aerospace applications. Release device is an important example of a task usually executed by pyrotechnic mechanisms. Many aerospace applications like satellite solar panels deployment or weather balloon separation need a release device. Several incidents, where pyrotechnic mechanisms could be responsible for spacecraft failure, have been encouraging new designs for these devices. The Frangibolt is a non explosive device which comprises a commercially available bolt and a small collar made of shape memory alloy (SMA) that replace conventional explosive bolt systems. This paper presents the modeling and simulation of Frangiblot by the change of bolt size and notch geometry. This analysis may contribute to improve the Frangibolt design.

Influence of Design Parameters on the Behavior of Pyrotechnic Separation Nut (파이로테크닉 분리 너트 거동에 대한 설계 인자의 영향 분석)

  • Woo, Jeongmin;Kim, Jeong Ho;Cho, Jin Yeon;Jang, Seung-Gyo;Lee, Hyo-Nam;Yang, Hee Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.617-628
    • /
    • 2019
  • The currently considered pyrotechnic separation nut is separated through the complicated process, because it has many internal moving parts and two variable-volume chambers connected by the vent hole. Therefore, it has many design parameters. Some of these are the contact angles between internal moving parts, the masses of the internal moving parts, the inner diameter of the push rod protrusion, the initial volumes of the chambers, the mass of the explosive charge, and the diameter of the vent hole. To improve the pyrotechnic separation nut, it is necessary to understand how the behavior of the separation nut is changed according to design parameters. In this point of view, parametric studies are carried out using the previously proposed prediction model for pyrotechnic separation nut behaviors. In each case, the parameter of the interest is changed while the others are kept unchanged. From the results, it is investigated how each design parameter influences the separation behavior.