• Title/Summary/Keyword: Pyrolytic carbon

Search Result 66, Processing Time 0.034 seconds

The Fiber Damage and Mechanical Properties of Short-fiber Reinforced Composite Depending on Nozzle Size Variations in Injection/Mold Sides (단섬유강화 복합재료에서 사출측/금형측 노즐 크기 변화에 따른 섬유손상 및 기계적 성질)

  • Lee, In-Seop;Lee, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.564-573
    • /
    • 2001
  • The mechanical properties of short carbon/glass fiber reinforced polypropylene are experimentally measured as functions of fiber content and nozzle diameter. Also, these properties are compared with the survival rate of reinforced fibers and fiber volume fraction using image analysis after pyrolytic decomposition. The survival rate of fiber aspect ratio as well as fiber volume fraction is influenced by injection processing condition, the used materials and mold conditions such as diameter of nozzle, etc. In this study, the survival rate of fiber aspect ratio is investigated by nozzle size variations in injection/mold sides. It is found that the survival rate of glass fiber is higher that the survival rate of glass fiber is higher than that of carbon fiber. Both tensile modulus and strength of short-fiber reinforced polypropylene are improved s the fiber volume fraction and nozzle diameter are increased.

Mid-term Experience with the Pyrolytic Carbon Bileaflet Mechanical Valves (쌍엽 기계판막에대한 임상연구)

  • 박계현
    • Journal of Chest Surgery
    • /
    • v.25 no.2
    • /
    • pp.137-148
    • /
    • 1992
  • Until March 1991, 435 St. Jude Medical valves and 330 CarboMedics valves were implanted in 358 and 251 patients, respectively. 300 patients were male and 309 were female with the mean age of 35.6 years[from 2 month to 68 years]. 458 valves were implanted in the mitral, 272 in the aortic, 25 in the tricuspid, and 10 in the pulmonic position. Postoperatively, all patients except for very young patients were given coumadin with or without dipyridamole for anticogulation Operative mortality was 7.3%[45 deaths per 618 operations]. A total follow-up of 1244.8 patient-years was achieved for the operative survivors with a follow-up rate of 96.8%, [mean follow-up period=26.3 months /patient, ranging from 1 to 80 months]. Functional improvement was evident; 66.7% of these patients were in NYHA functional class III or IV preopratively, whereas 98.4% are in class I or II pos-toperatively. There occurred 13 late deaths[7 valve-related] and 55 valve-related complications. Linearized rates of late death and valve-related complications were 1.0%/ patient-year, 4.42%/patient-year, respectively. Rates of thromboembolism, anticoagluation-related hemorrhage were 1.12%/patient-year, 1.69% /patient-year, respectively. Actuarial survival at 5 years is 96.0% and complication-free survival at 5 years is 83.9%. No difference in survival and incidence of complications was found between the St. Jude and CarboMedics valves. On the basis of this experience, we believe that the pyrolytic carbon bileaflet mechanical valves are safe and preferable choice among current valve prostheses.

  • PDF

Stress Analysis for Fiber Reinforced Composites under Indentation Contact Loading (압입접촉하중이 작용하는 섬유강화 복합재료의 응력해석)

  • Jang, Kyung-Soon;Kim, Tae-Woo;Kim, Chul;Woo, Sang-Kuk;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.238-244
    • /
    • 2008
  • Modeling and FEM analysis on Boron Nitride and/or Pyrolytic Carbon coating layers on SiC fibers under indentation contact loadings are investigated. Especially this study attempts to model the mechanical behavior of the SiC fibers with and without coatings. Tyranno S grade and Tyranno LoxM grade of SiC are selected for fiber and Boron Nitride and/or Pyrolytic Carbon as coating material. The modeling is performed by SiC fiber without coating layer, which includs single(BN or PyC) and double(BN-PyC or PyC-BN) coating layer. And then the analysis is performed by changing a type of coating layer, a type of fiber and coating sequence. In this study, the concepts of modeling and analysis techniques for optimum design of BN and PyC coating process on SiC fiber are shown. Results show that stresses are reduced when indentation contact loading applies on the material having lower elastic modulus.

Comparison of Waste-Plastic Recycling Methods for Environmental Assessment (환경성 평가를 위한 폐플라스틱 재활용 방법들의 비교)

  • Park, Chan-Hyuk;Choi, Suk-Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.101-111
    • /
    • 2006
  • In the present work, life cycle assessments (LCA) of various waste-plastic recycling methods (material recycling, refused derived fuel (RDF), recycling on furnace, and pyrolytic oil production) were carried out to investigate their impacts on the environment. Six types of impacts were considered. While the impact on global warming was found to be significant, the impact on others were negligible. The impact values on the global warming caused by the material recycling, RDF, and the recycling on furnace were negative, which implied that their impacts could be noticeably reduced when waste-plastic are used as an alternative to newly drawn plastics. The pyrolytic oil production, however, showed positive value, which may be due to the carbon dioxide produced during electric power generation. The pyrolytic oil production had the largest impact on the ozone layer destruction, which was due to ozone depleting substances produced from the process itself. These results can be used as a useful data for the enhancement of waste-plastic recycling.

  • PDF

Development on Integrated Pyrolysis Cogeneration System for Waste Tire Recycling Treatment (폐타이어 재활용 처리를 위한 열분해 열병합 복합공정기술개발)

  • Kim, Seong-Yeon;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1990-1995
    • /
    • 2008
  • The thermochemical recycling of waste tires by pyrolysis is studied to recover the value added three by-products; a pyrolytic carbon black, a pyrolytic oil, and a non-condensable gas. The exhausted energy from pyrolysis of waste tires is converted for electricity power and process steam in cogeneration system. The characteristics of the pyrolysis recovered by-products as alternative energy resource are investigated with the design of a demonstration and a commercialization plant including cogeneration system, as called integrated pyrolysis cogeneration system.

  • PDF

Carbon-based Materials for Atomic Energy Reactor

  • Sathiyamoorthy, D.;Sur, A.K.
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.36-39
    • /
    • 2003
  • Carbon and carbon-based materials are used in nuclear reactors and there has recently been growing interest to develop graphite and carbon based materials for high temperature nuclear and fusion reactors. Efforts are underway to develop high density carbon materials as well as amorphous isotropic carbon for the application in thermal reactors. There has been research on coated nuclear fuel for high temperature reactor and research and development on coated fuels are now focused on fuel particles with high endurance during normal lifetime of the reactor. Since graphite as a moderator as well as structural material in high temperature reactors is one of the most favored choices, it is now felt to develop high density isotropic graphite with suitable coating for safe application of carbon based materials even in oxidizing or water vapor environment. Carboncarbon composite materials compared to conventional graphite materials are now being looked into as the promising materials for the fusion reactor due their ability to have high thermal conductivity and high thermal shock resistance. This paper deals with the application of carbon materials on various nuclear reactors related issues and addresses the current need for focused research on novel carbon materials for future new generation nuclear reactors.

  • PDF

Physicochemical and Electrochemical Characteristics of Carbon Nanomaterials and Carbon Nanomaterial-Silicon Composites

  • Kim, Soo-Jin;Hyun, Yura;Lee, Chang-Seop
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.299-309
    • /
    • 2016
  • In this study, the physicochemical and electrochemical properties of carbon nanomaterials and synthesized nano-carbon/Si composites were studied. The nano-carbon/Si composites were ball-milled to a nano size and coated with pyrolytic carbon using Chemical Vapor Deposition (CVD). They were then finely mixed with respective nano-carbon materials. The physicochemical properties of samples were analyzed using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Raman spectroscopy, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and surface area analyzer. The electrochemical characteristics were investigated using the galvanostatic charge-discharge and cyclic voltammetry (CV) measurements. Three-electrode cells were fabricated using the carbon nanomaterials and nano-carbon/Si composites as anode materials and LiPF6 and LiClO4 as electrolytes of Li secondary batteries. Reversibility using LiClO4 as an electrolyte was superior to that of LiPF6 as the electrolyte. The initial discharge capacities of nano-carbon/Si composites were increased compared to the initial discharge capacities of nano-carbon materials.

Formation of a Carbon Interphase Layer on SiC Fibers Using Electrophoretic Deposition and Infiltration Methods

  • Fitriani, Pipit;Sharma, Amit Siddharth;Lee, Sungho;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.284-289
    • /
    • 2015
  • This study examined carbon layer coating on silicon carbide (SiC) fibers by utilizing solid-state and wet chemistry routes to confer toughness to the fiber-reinforced ceramic matrix composites, as an alternative to the conventional pyrolytic carbon (PyC) interphase layer. Electrophoretic deposition (EPD) of carbon black nanoparticles using both AC and DC current sources, and the vacuum infiltration of phenolic resin followed by pyrolysis were tested. Because of the use of a liquid phase, the vacuum infiltration resulted in more uniform and denser carbon coating than the EPD routes with solid carbon black particles. Thereafter, vacuum infiltration with controlled variation in phenolic resin concentration, as well as the iterations of infiltration steps, was improvised to produce a homogeneous carbon coating having a thickness of several hundred nanometers on the SiC fiber. Conclusively, it was demonstrated that the carbon coating on the SiC fiber could be achieved using a simpler method than the conventional chemical vapor deposition technique.

Effect of Particle Size and Moisture Content of Woody Biomass on the Feature of Pyrolytic Products (급속열분해 공정에서 바이오매스의 입자크기와 수분 함량이 열분해 산물의 특성에 미치는 영향)

  • Hwang, Hyewon;Oh, Shinyoung;Kim, Jae-Young;Lee, Soomin;Cho, Taesu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.445-453
    • /
    • 2012
  • In this study the effects of particle size and water content on the yields and physical/chemical properties of pyrolytic products were investigated through fast-pyrolysis of yellow poplar. Water content was critical parameters influencing the properties of bio-oil. The yields of bio-oil were increased with decreasing water content. However, the yield of pyrolytic product was not clearly influenced by feedstock's particle size. The water content, pH and HHV (Higher Heating Value) of bio-oil were measured to 20~30%, 2.2~2.4 and 16.6~18.5MJ/kg, respectively. The water content of feedstock was clearly influenced to water content of bio-oil. In terms of bio-char, HHV of them were measured to 26.2~30.1 MJ/kg with high content of carbon over 80%.

Development and Animal Tests of Artificial Heart Valves (인공심장판막의 개발 및 동물실)

  • 이재영
    • Journal of Chest Surgery
    • /
    • v.20 no.3
    • /
    • pp.458-472
    • /
    • 1987
  • A heart supplies bloods of about 15, 000 liters to each human organ in a day. A normal function of heart valves is necessary to this act of heart. The disease of heart valve develops to a narrowness of a closure, resulting in an abnormal circulation of bloods. In an attempt to eliminate the affliction of heart valves, the operation method to repair with artificial heart valves has been developed and saved numerous patients over past 30 years. This replacement operation has been performed since early 1960`s in Korea, but all the artificial heart valves used are imported from abroad with very high costs until recent years. The artificial heart valve using pyrolytic carbon has been developed at KAIST, which was proved to be stable in the mechanical performance and durability. Therefore, the in viva performance of this valve was examined through animal tests. The artificial heart valves used in this study are tilting disc type valves, in which the disc were made of graphite coated with pyrolytic carbon and the cages were made of titanium. In viva testings of these valves were performed in 12 dogs, in which right ventriculo-pulmonary arterial [Croup I] or inter-aortic [Croup IV] valved conduit was implanted using polytetrafluoroethylene conduits containing KAIST valve and aortic valve [Group II] or pulmonary valve [Croup III] was replaced by a KAIST valve with a 21mm or 19mm tissue annulus diameter. In group I and II, pre-and post-operative transvalvular pressure gradient was measured and compared with other prosthetic valves. During post operative period laboratory examination was performed including hemoglobin, hematocrit, red cell count, white cell, lactic acid dehydrogenase and platelet. The eight surviving dogs were sacrificed and autopsy was performed at 2, 6, and 8 weeks. KAIST valve has low transvalvular gradient and relatively high orifice area. Average ventriculo-aortic peak systolic transvalvular gradient was 14 mmHg in 21 mm valve and 19 mmHg in 19 mm valve. The valve has slight intravascular hemolysis effect. Thrombogenic effect of low polishing quality and eddy currents around small orifice is high. The valve has vulnerability of disc movement. These animal tests suggest that the improvement of the heart valve design, surface polishing state and prescription methods.

  • PDF