• Title/Summary/Keyword: Pyrolysis at low temperature

Search Result 108, Processing Time 0.026 seconds

Experimental Study on Oil Separation from Fry-dried Low-rank Coal

  • Ohm, Tea-In;Chae, Jong-Seong;Lim, Jae-Ho;Moon, Seung-Hyun
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.30-37
    • /
    • 2013
  • Low-rank coal with high water content (32.3 wt%) was dried by fry drying, and the fuel characteristics of the dried coal from which the oil was separated by using a high-speed centrifugal separator were analyzed. After fry drying for 6 min and 10 min, the water content decreased to 5.0 wt% and 4.2 wt% respectively. The higher calorific value (HCV) of the coal increased remarkably after fry drying, from 11,442.0 kJ/kg-wet. The oil content of the fry-dried coal was 15.0 wt% and it decreased with an increase in the reheating temperature: 9.7 wt% at $80^{\circ}C$ to 9.3 wt% at $100^{\circ}C$, and then to 8.5 wt% at $120^{\circ}C$. The recovered oil could then be reused. According to of thermogravimetric analysis (TGA), there was no difference in the weight loss patterns of the coal samples with different coal diameters at a reheating temperature of $120^{\circ}C$. This was because the amount of oil separated by the centrifugal separator was affected by the reheating temperature rather than the coal diameter. And derivative thermogravimetry (DTG) curves of raw coal before the fry-drying process, a peak is formed at $400^{\circ}C$ in which the volatile matter is gasified. In case of the fry-dried coal, the first peak is generated at $350^{\circ}C$, and the second peak is generated at $400^{\circ}C$. The first peak is caused by the oil that is replaced with the water contained in the coal during the fry-drying process. Further, the peaks of the coal samples in which the oil is separated at a reheating temperature of $80^{\circ}C$, $100^{\circ}C$, $120^{\circ}C$, respectively are smaller than that of the coal in which the oil is not separated, and this is caused by that the oil is separated by the centrifugal separator.

Application Effects of Biochar Derived from Pruned Stems of Pear Tree on Growth of Crops and Soil Physico-chemical Properties (배 전정지 바이오차 시용이 작물 생육 및 토양이화학성에 미치는 영향)

  • Jang, Jae-Eun;Lim, Gab-June;Park, Jung-Soo;Shim, Jae-Man;Kang, Chang-Sung;Hong, Sun-Seong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2018
  • This study was conducted to develop the manufacturing method of biochar using pruned stems of pear tree and its application effect on the crop growth and soil physico-chemical properties. In this study, biochar derived from pruned stems of pear tree at heating temperature of $300^{\circ}C$, $500^{\circ}C$ and $700^{\circ}C$ in heating times of 2, 3 and 4 hours, were tested in the changes of their chemical properties during biochar processing. The pH, Exch. K, Exch. Mg and cation exchange capacity (CEC) increased as the pyrolysis temperature increased during the production of biochar, and the change of these properties rapidly occurred at $500^{\circ}C$. However, as the pyrolysis temperature increased, ash content increased and total carbon (T-C), yield decreased. And the change of the properties in response to the heating time was not shown. It was thought that it would be desirable to set the production conditions of biochar at $500^{\circ}C$ for 2 hours in consideration of the change of chemical properties and the ash content and yield. And also, were conducted the experiments to establish manufacturing method of farm-made biochar using drum biochar manufacturing machine and investigate the application effects of biochar on the cultivation of chinese cabbage and tomato. Application of biochar derived from pruned stems of pear tree could enhance pH, organic matter (OM), total carbon (T-C) of soil. On the other hand, soil electrical conductivity (EC), NO3-N were lowered compared to the control which has no application. The bulk density, porosity and aggregate formation of soil were improved by biochar application. The fresh matter yields of chinese cabbage and tomato were significantly increased in proportion to the application rate of biochar. This study demonstrated the effect of the biochar derived from agricultural byproduct to be as a low cost potential soil ameliorant by physico-chemical properties in eco-friendly greenhouse cultivation.

A Study on Multi-Stage Catalytic Ignitor for Hybrid Rocket Auto Ignition (하이브리드 로켓 자동점화를 위한 다단촉매점화기에 관한 연구)

  • Choi, Woojoo;Kim, Jincheol;Kwon, Minchan;Yoo, Yeongjun;Kim, Taegyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.117-119
    • /
    • 2017
  • The multi-stage catalytic igniter for hybrid rocket auto ignition is described in this paper. After charging the catalyst and pre-heating the first stage, the $N_2O$ was supplied at the first stage with the low mass flow rate, and then the $N_2O$ with the high flow rate was supplied into the second stage. Even though the $N_2O$ flow rate was high, it was decomposed by supplying the high temperature gas which was evolved from the $N_2O$ decomposition in the first stage. This multi-stage ignitor resulted in the decrease of the ignition time in comparison with the previous ignitor, and confirmed the possibility of $N_2O$ decomposition with the high flow rate using the multi-stage catalytic-ignition system.

  • PDF

Thermal Rearrangement of 1,1-Disubstituted 2-Vinylcyclopropanes to 4,4-Disubstituted Cyclopentenes (두 치환체를 가진 비닐시클로프로판의 시클로펜텐으로의 열적자리 옮김반응)

  • Iwhan Cho;Kwang-Duk Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.158-163
    • /
    • 1978
  • The four 1,1-disubstituted 2-vinylcyclopropanes, 1,1-diphenyl-2-vinylcyclopropane (1a), 1,1-dicyano-2-vinylcyclopropane(1b), ethyl 1-cyano-2-vinylcyclopropanecarboxylate(1c), and diethyl 2-vinylcyclopropane-1,1-dicarboxylate(1d) rearranged below $300{\circ}C$ to the corresponding 4,4-disubstituted cyclopentenes, 4,4-diphenylcyclopentene(2a), 3-cyclopentene-1,1-dicarboxylate(2d). Diphenpyl derivative 1a rearranged almost quantitatively to 4,4-diphenylcyclopentene(2a) at the temperature of $250{\circ}C$. Although dicyano derivative 1b in solution underwent the thermal rearrangement at rather low temperature of $170{\circ}C$, the other vinylcyclopropanes, 1c and 1d, in solution rearranged thermally above $220{\circ}C$. In the thermal reaction of 1b, 1c, and 1d considerable amounts of polymers 3 were also produced. Also detected product was the ring-opened diene, ethyl 2-cyano-2,4-hexadienoate(4), in case of the pyrolysis of 1c. The observed facile rearrangement of disubstituted vinylcyclopropanes was explained by the radical stabilization effect of substituents on the diradical intermediates 5.

  • PDF

Nonthermal Plasma-assisted Diesel Reforming and Injection of the Reformed Gas into a Diesel Engine for Clean Combustion (디젤의 청정연소를 위한 저온 플라즈마 연료개질 및 개질가스의 디젤엔진 첨가에 관한 연구)

  • Kim, Seong-Soo;Chung, Soo-Hyun;Kim, Jin-Gul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.394-401
    • /
    • 2005
  • A nonthermal plasma-assisted fuel reformer was developed and the effects of operating variables on the performance of this reformer were studied. The $H_2$-rich reformed gas from the reformer was injected into a diesel engine under an idle condition and the effects of the amount of injected gas on the NO and soot reduction were investigated. It was found that with increasing electric power consumption, the degree of facility of ignition of the reforming reaction in the reformer could be enhanced. The performance of the reformer including $H_2$ concentration, $H_2$ recovery, and energy conversion was affected only by the O/C mole ratio. This was because the equilibrium reaction temperature was governed by the O/C mole ratio. With increasing O/C mole ratio, the $H_2$ recovery and energy conversion passed through the maximum values of 33.4% and 66%, respectively, at an O/C mole ratio between 1.2 and 1.5. The reason why the $H_2$ recovery and energy conversion increased with increasing O/C mole ratio when the O/C mole ratio was lower than $1.2{\sim}1.5$ appeared to be that the complete oxidation reaction occurred more enough with increasing O/C mole ratio in this low O/C mole ratio range and accordingly the reaction temperature increased. Whereas the reason why the $H_2$ recovery and energy conversion decreased with increasing O/C mole ratio when the O/C mole ratio was higher than $1.2{\sim}1.5$ appeared to be that the complete oxidation reaction was further advanced and the $H_2$ recovery and energy conversion decreased. As the weight ratio of reformed diesel to total diesel which entered the diesel engine was increased to $18.2{\sim}23.5%$, NO and soot reduction efficiencies increased and reached as values high as 68.5% and 23.5%, respectively.

A Study on Development of Activated Carbons from Waste Timbers (폐벌목(廢伐木)을 이용(利用)한 활성탄(活性炭) 개발(開發)에 관(關)한 연구(硏究))

  • Kim, Jong-Moon;Chung, Chan-Kyo;Min, Byong-Hoon
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.68-78
    • /
    • 2008
  • Using a Pinus koraiensis and Pinus rigida which are normally being discarded in South Korea, optimal conditions of producing activated carbons have been studied to recycle as a higher value-added product. This study consists of two processes, the production process of charcoals from waste timbers by low temperature pyrolysis and the production process of activated carbons from the charcoals by chemical activation reaction. This paper deals with the production process of activated carbons from the charcoals by chemical activation reaction. As an alkali has been generally used as an activating agent, KOH and NaOH which react well with a carbon were used in this study. As a result of the experiments, it is confirmed that activated carbons made with KOH treatment had superior values in physicochemical properties to NaOH, showing that there was no remain of KOH at the surface of the charcoals while there was $3{\sim}4%$ of NaOH remaining after the experiments. Thus, it is concluded that KOH reacted more actively with a charcoal than NaOH. Moreover, it was also found that values in physicochemical properties when using a Pinus koraiensis are superior to the ones when using a Pinus rigida. The optimal mixing ratio of an activating agent to a charcoal was 400 wt.%. To improve the physicochemical properties, activated carbons were washed out by distilled water after neutralization with SM hydrochloric acid solution. When activated carbons were produced from a Pinus koraiensis in this optimal conditions, value of BET surface area was found to be approx. $2400\;m^2/g$.

Soil Carbon Storage in Upland Soils by Biochar Application in East Asia: Review and Data Analysis (바이오차를 이용한 밭 토양 탄소 저장: 동아시아 지역 연구 리뷰 및 데이터 분석)

  • Lee, Sun-Il;Kang, Seong-Soo;Choi, Eun-Jung;Gwon, Hyo-Suk;Lee, Hyoung-Seok;Lee, Jong-Mun;Lim, Sang-Sun;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.219-230
    • /
    • 2021
  • BACKGROUND: Biochar is a solid material converted from agricultural biomass such as crop residues and pruning branch through pyrolysis under limited oxygen supply. Biochar consists of non-degradable carbon (C) double bonds and aromatic ring that are not readily broken down by microbial degradation in the soils. Due to the recalcitrancy of C in biochar, biochar application to the soils is of help in enhancing soil carbon sequestration in arable lands that might be a strategy of agricultural sector to mitigate climate change. METHODS AND RESULTS: Data were collected from studies on the effect of biochar application on soil C content conducted in East Asian countries including China, Japan and Korea under different experimental conditions (incubation, column, pot, and field). The magnitude of soil C storage was positively correlated (p < 0.001) with biochar application rate under field conditions, reflecting accumulation of recalcitrant black C in the biochar. However, The changes in soil C contents per C input from biochar (% per t/ha) were 6.80 in field condition, and 12.58 in laboratory condition. The magnitude of increment of soil C was lower in field than in laboratory conditions due to potential loss of C through weathering of biochar under field conditions. Biochar production condition also affected soil C increment; more C increment was found with biochar produced at a high temperature (over 450℃). CONCLUSION: This review suggests that biochar application is a potential measures of C sequestration in agricultural soils. However, as the increment of soil C biochar was affected by biochar types, further studies are necessary to find better biochar types for enhanced soil C storage.

Evaluation of Nutrients Removal using Pyrolyzed Oyster Shells (소성온도에 따른 굴 패각의 영양염 제거 성능 평가)

  • Jeong, Ilwon;Woo, Hee-eun;Lee, In-Cheol;Kim, Jinsoo;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.906-913
    • /
    • 2019
  • To evaluate the removal performance of PO4-P and NH3-N, laboratory experiments were conducted by filling a container with oyster shells, pyrolyzed at 100℃ (POS100), 600℃ (POS600) and 800℃ (POS800), and passing artificial wastewaters through the container. The pH in the ef luent was found to increase due to CaO eluted from oyster shell. Removal amounts of PO4-P of ~23.1 mg/kg, 16.1 mg/kg, and 15.9 mg/kg were obtained when POS100, POS600, and POS800, respectively, were used; therefore, the highest PO4-P removal amount was obtained when POS100 was used. It is considered that Ca and dolomite in the oyster shells adsorbed and precipitated PO4-P. Removal amounts of NH3-N were of ~3.56 mg/kg, 5.72 mg/kg, and 3.97 mg/kg were obtained when POS100, POS600, and POS800, respectively, were used The low removal rate for NH3-N is probably due to unstable nitrification, use of sealed containers, and the effect of NH3-N being converted to NH4+ upon increasing pH. Based on these results, pyrolyzed oyster shell is expected to promote changes in PO4-P and NH3-N concentrations through chemical reactions. These results can also be used for basic research in the development of wastewater treatment.