• Title/Summary/Keyword: Pyrolysis

Search Result 1,538, Processing Time 0.03 seconds

Fabrication of carbon nanostructures using electron beam lithography and pyrolysis for biosensing applications (전자빔 리소그래피와 열처리를 이용한 탄소 나노구조물의 제작 및 바이오센싱 응용연구)

  • Lee, Jung-A;Lee, Kwang-Cheol;Park, Se-Il;Lee, Seung-S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1727-1732
    • /
    • 2008
  • We present a facile, yet versatile carbon nanofabrication method using electron beam lithography and resist pyrolysis. Various resist nanopatterns were fabricated using a negative electron beam resist, SAL-601, and were then subjected to heat treatment in an inert atmosphere to obtain carbon nanopatterns. Suspended carbon nanostructures were fabricated by wet-etching of an underlying sacrificial oxide layer. Free-standing carbon nanostructures, which contain 122 nm-wide, 15 nm-thick, and 2 ${\mu}m$-long nanobridges, were fabricated by resist pyrolysis and nanomachining processes. Electron beam exposure dose effects on resist thickness and pattern widening were studied. The thickness of the carbon nanostructures was thinned down by etching with oxygen plasma. An electrical biosensor utilizing carbon nanostructures as a conducting channel was studied. Conductance modulations of the carbon device due to streptavidin-biotin binding and pH variations were observed.

  • PDF

A study on the recovery of useful components from waste tire (폐타이어로부터 유용성분의 회수에 관한 연구)

  • 이덕수
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.2
    • /
    • pp.88-100
    • /
    • 1994
  • A study on the recovery of useful components from waste tire. This study was carried out investigate the recovery of fuel oil condensed from gases formed in the pyrolysis of waste tire. Energy to require the pyrolysis of waste tire was used the heat that was produced by the combustion of the gases from the pyrolysis of waste tire itself. The results are as follows; 1. Energy to require forming the fuel oil by the pyrolysis of waste tire was used only 1/6 quantities of waste tire for forming fuel oil. 2. The formed fuel oil were light oil, Kerosene and gasoline 3. The pollutants of combustion gas of patronizable gases was lower than standard Value.

  • PDF

Result and Assignment on Development of Waste Tire Pyrolysis Demonstration Plant with Disk Moving Tube Reactor System (디스크이동식 폐타이어 열분해 실증공정 개발의 성과와 과제)

  • Kim, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.325-328
    • /
    • 2009
  • The 10t/d pyrolysis demonstration plant have been developed for waste tire recycling treatment and value added commercialization. The initial plant model had been started under 2.4t/d capacity with continuous operation, and the commercial plant has been achieved to the 120t/d based on demonstration plant having the tube reactor with chain conveyer attached disk. The next generation pyrolysis plant for waste tire is reviewed and the assignment for plant development is presented briefly.

  • PDF

Waste Tire Pyrolysis Commercialization Plant for 120t/d Treatment (120톤/일 처리 폐타이어 열분해 상업화 설비 개발)

  • Kim, Seong-Yeon;Kim, Ki-Kyeong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.138-141
    • /
    • 2008
  • The 120t/d pyrolysis commercial plant for waste tire recycling have been constructed in Malaysia and is going to be operated. The plant have the tube reactor with chain conveyer attached disk developed in demonstration research stage. The reactor temperature for commercial plant is about 500deg.C and reactor inside pressure is -100$\sim$-120mmHg. Non-condensable gas is used as fuel for pyrolysis heat source, and the exhausted heat is recovered for cogeneration to produce steam and electric power of 600kw.

  • PDF

Preparation of Ultrafine Barium Titanate Powder by Slurry Spray Pyrolysis (슬러리 분무열분해에 의한 초미립 티탄산 바륨 분말 제조)

  • Lee, Jong-Ho;Hur, Kang-Heon;Lee, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.137-145
    • /
    • 2009
  • A remarkable improvement of the productivity in barium titanate by slurry spray pyrolysis process was realized by supplying solid source slurry into the rector. The produced barium titanate powders showed uniform powder properties, and reproducibility with higher tetragonality in the range of 80$\sim$200 nm, case by case. The secondary calcination experiments of the as-prepared powders by spray pyrolysis revealed that the powders as-prepared over 700$^{\circ}C$ showed perfectly different behavior with the lower temperature's ones and the solid state reaction’s case. The result was discussed in terms of the reaction mechanism based on the activation energy analysis.

Fabrication of High Tc Superconductor using Thermal Pyrolysis Method (열분해법에 의한 초전도체 합성)

  • Lee Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.785-789
    • /
    • 2006
  • BiSrCaCuO(2223) superconductor was fabricated by the thermal pyrolysis method. The superconducting precursor produced by the dehydration of the gel at $120^{\circ}C$ for 12 h is not in the amorphous state as expected but in a crystalline state. In this paper, the establishment of fabrication condition was examined so as to improve the related properties to the practical use of BiSrCaCuO superconductor, and we reported the production of the BiSrCaCuO by the pyrolysis method.

On the Pyrolysis of Polymers III. Identification of Gases from Rubber Pyrolysis by Gas Chromatography (高分子物質의 熱分解에 關한 硏究 (第3報) 合成고무類의 熱分解生成物의 Gas Chromatography에 의한 檢索과 合成고무 確認에의 利用)

  • Chwa-Kyung Sung
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.115-121
    • /
    • 1963
  • Aliphatic hydrocarbon gases from rubber pyrolysis have been identified by gas chromatography with tetraethyleneglycol dimethylether column. Rubbers used in this work are polyisoprene, SBR, NBR, polybutadiene, buthyl rubber, polychloroprene and polyurethane rubber. The chromatogram is characteristic for each polymer. Author proposes a method of identification of synthetic rubbers by gas chromatograph of pyrolyzed gas. Sample is pyrolyzed at $450^{\circ}C$ under nitrogen or more effectively helium and gaseous portion, which eliminated liquid condensate, is passed to the column. The appearance of exclusively large peak of isoprene, isobutylene and carbon dioxide shows the presence of polyisoprene, polyisobutylene and polyurethane, respectively. Large peak of butadiene will appear in case of polybutadiene, SBR and NBR, but SBR can be identified through the styrene peak in gas chromatogram of liquid pyrolyzate and NBR can be identified by the evolution of hydrogen cyanide during pyrolysis. Polychloroprene is identified by the evolution of hydrogen chloride. This method could be applied to the identification of copolymer or polymer blend.

  • PDF

Photoluminescence Characteristics of Eu-doped YBO3 Phosphor Prepared by Spray Pyrolysis under Vacuum Ultraviolet (분무열분해 공정에 의해 합성된 유로피움이 도핑된 YBO3 형광체의 진공자외선 하에서의 발광 특성)

  • Koo, Hye-Young;Kang, Yun-Chan
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.485-489
    • /
    • 2006
  • The preparation conditions of $YBO_3$:Eu phosphor particles having the maximum photoluminescence intensity under vacuum ultraviolet in the spray pyrolysis were optimized. The $YBO_3$:Eu phosphor particles prepared from spray solution with stoichiometric amount of boric acid had the maximum photoluminescence intensity. The $YBO_3$:Eu phosphor particles with pure phases were formed at low post-treatment temperatures because of fast reaction of yttrium and boron components without volatilization of boron component. The prepared $YBO_3$:Eu phosphor particles by spray pyrolysis had fine size, narrow size distribution and regular morphology. The photoluminescence intensity of the prepared $YBO_3$:Eu phosphor particles under vacuum ultraviolet was 103% of the commercial $(Y,Gd)BO_3$:Eu phosphor particles.

Decomposition of Chlorofluorocarbon by Sonication (초음파조사에 의한 염화불화탄소(CFC)의 분해)

  • ;;Kyozo Hirai;Yasuaki Maeda
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.307-314
    • /
    • 2003
  • The sonolytic decomposition of chlorofluorocarbon (CFC 113) and several alternative compounds, such as HCFC 225ca, HCFC 225cb, and HFC 134a, in.aqueous solutions was investigated. The CFC 113 with a high volatility and a low solubility in water was rapidly decomposed with increasing sonication time. The decomposition rates were influenced by the initial concentration of CFC 113, the reaction temperature, and the gas/liquid phase volume ratio but were independant of the pH of solution. The predominant pathway of the decomposition of CFC 113 by sonication was not the oxidation by OH radicals but the pyrolysis with high temperature and pressure inside of the cavitation bubble. The pyrolysis in the cavitation bubble resulted in an almost complete mineralization of CFC 113 with the high efficient formation of inorganic products (Cl$^{[-10]}$ , F$^{[-10]}$ , CO, $CO_2$). The addition of zinc powder on the decomposition of CFC 113 by sonication caused an acceleration of the decomposition. Also, HCFCs and HFC 134a were found to be readily decomposed by the pyrolysis induced from the sonication.

Synethisis of fine BSCCO precursor powder by spray pyrolysis (분무 열분해에 의한 미세 BSCCO 전구체 분말의 합성)

  • 김성환;유재무;고재웅;김영국;박성창
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.99-102
    • /
    • 2003
  • Many researches on synthesis process for BSCCO precursor powders have been developed for high J$_{c}$ BSCCO-2223/Ag tape. Spray pyrolysis method for fabrication of precursor powder has many advantages, such as high purity, fine particle size of BSCCO precursor powder. Fine, spherical powders were prepared by ultrasonic spray pyrolysis from the aqueous solution of metal nitrates. BSCCO precursor powders were synthesized with 0.1 M concentration and heat treatment conditions. Average particle size for spray pyrolysis powders was 1.5 ~ 3 ${\mu}{\textrm}{m}$. BSCCO -2223/Ag tape was prepared by PIT method and followed by various sintering conditions. The critical current density of BSCCO-2223/Ag tape sintered in low oxygen partial pressure was ~ 23 kAcm$^{-2}$.

  • PDF