• Title/Summary/Keyword: Pyrolysis

Search Result 1,537, Processing Time 0.021 seconds

Studies on the Catalytic Pyrolysis Products of Hardwood (활엽수재(闊葉樹材)의 촉매적(触媒的) 열분해(熱分解) 생성물(生成物)에 관한 연구(硏究))

  • Min, Du Sik;Lee, Jong Goun
    • Journal of Korean Society of Forest Science
    • /
    • v.65 no.1
    • /
    • pp.12-23
    • /
    • 1984
  • This study was carried out to investigate on the catalytic pyrolysis products of hardwood (Alnus hirsuta (Spach) Rupr. Quercus acutissima Carruters, Robinia pseudoacacia L., and Populus tomentaglandulosa T. Lee) and comparing the rate of catalytic pyrolysis from untreated wood (ordinary wood) with that of treated wood with catalizer (Ammonium phosphate, Ammonium sulfate, Ammonium chloride and Urea). The results were summerized as follows; 1) It is the Populus tomentiglandulosa T. Lee that the species has the most content of holocellulose and pentosan. And Populus tomentiglandulosa exhibited high yield of the distillate in pyrolysis products by Ammonium phosphate with catalizer. 2) The distillate of pyrolysis products is decreased in accordance with increasing catalytic concentration. And untreated wood (ordinary wood) with catalizer has the most distillate of pyrolysis products. 3) The yield of charcoal in pyrolysis products is increased in accordance with increasing catalytic concentration and lignin content of species. 4) The caloric values of charcoal in pyrolysis products is decreased with increasing catalytic concentration. And untreated wood (ordinary wood) with catalizer had the most caloric values, but the caloric values of charcoal did not show statistically significent difference at 5% levels in catalizer.

  • PDF

Adsorption Characteristics of Heavy Metal and VOCs of Pyrolysis Char from Organic Waste Sludge (유기성 폐슬러지의 열분해 차르에 대한 중금속 및 VOCs 흡착특성)

  • Park, Sang-Sook;Kang, Hwa-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.130-137
    • /
    • 2005
  • This research programme include investigation of the adsorption behavior of heavy metals and VOCs by Pyrolysis char for using landfill cover material. The volatile potions in the sludge gasified during the pyrolysis period and gave birth to porosity throughout the matrix. The result of the ad/desorption experiment of nitrogen to find out the formation of some pore by the gasification of the volatile matter, we can certify that the pyrolysis char($14.56\;m^2/g$) has increased twice more than the organic wasted sludge($6.68\;m^2/g$) in specific surface area. The pyrolysis char has the adsorption characteristic of medium type of Type II and V in BDDT classification, and showed a little micro pore. In the adsorption experiment of ethylbenzene and toluene, as a result of applying the Freundlich adsorption isotherms, the pyrolysis char was higher in the adsorptivity of ethylbenzene and toluene than the granite and the organic wasted sludge. The results of the heavy metal adsorption test for the char indicated that it had some ability of adsorption. It is suggest that pyrolysis char has some advantages for utilizing as landfill covers because the pyrolysis char can adsorb/absorb hazardous substances from the landfill sites and inhibit the ground water and soil contamination.

Zn2SiO4:Mn Phsophor Particles Prepared by Flame Spray Pyrolysis (화염분무열분해 공정에 의해 합성되어진 Zn2SiO4:Mn 형광체)

  • Kang Y. C.;Sohn J. R.;Jung K. Y.
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.600-606
    • /
    • 2004
  • $Zn_{2}SiO_{4}:Mn$ phosphor particles were prepared by a flame spray pyrolysis method. It has been generally known that the high-temperature flame enables fast drying and decomposition of droplets. In the present investigation, the morphology and luminescent property of $Zn_{2}SiO_{4}:Mn$ phosphor were controlled in a severe flame preparation condition. The particle formation in the flame spray pyrolysis process was achieved by the droplet-to-particle conversion without any evaporation of precursors, which made it possible to obtain spherical $Zn_{2}SiO_{4}:Mn$ particles of a pure phase from a droplet. Using colloidal solutions wherein dispersed nano-sized silica particles were adopted as a silicon precursor. $Zn_{2}SiO_{4}:Mn$ particles with spherical shape and filled morphology were prepared and the spherical morphology was maintained even after the high-temperature heat treatment, which is necessary to increase the photoluminescence intensity. The $Zn_{2}SiO_{4}:Mn$ particles with spherical shape, which were prepared by the flame spray pyrolysis and posttreated at $1150^{\circ}C$, showed good luminescent characteristics under vacuum ultraviolet (VUV) excitation.

Performance and Emission Studies in a DI Diesel Engine Using Wood Pyrolysis Oil-Bio Diesel Emulsion (목질계 열분해유-바이오 디젤 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.197-204
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the WPO. One of the easiest way to adopt WPO to diesel engine without modifications is emulsification of WPO with diesel or bio diesel. In this study, a DI diesel engine operated with diesel, bio diesel (BD), WPO/BD emulsion was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by WPO/BD emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation.

Basic Studies on the Pyrolysis of Lignin Compounds (리그닌 화합물의 열분해에 관한 기초 연구)

  • ;John R. Obst
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • Lignin model compounds I-lV were pyrolyzed at 315$^{\circ}C$. The mixture compounds pyrolized were analyzed by GC-MS spectrometry. The results were summarized as follows : 1. From the pyrolysis of lignin model compound I and II, 0.45mo1 of guaiacol, 0.5mol of dimethoxyphenol(DMP), and 0.12 and 0.23mo1 of dimethoxyacetonphenone(DMAP) were produced respectively. 2. In the pyrolysis of lignin model compound III and IV, 0.26mol of guaiacol, 0.30mo1 of DMP, and 0.09 and 0.15mo1 of trimethoxyaretonphenone(TMAP) were produced respectively 3. Pyrolysis mechanism of lignin model compounds are dehydrated at first, and $\beta$-04 linkage cleavaged, and then guaiacol, DMP, DMAP and TMAP were produced. The above results show that lignin model compound I and II produce more aromatic compounds than lignin model compound III and IV. This is reason that veratryl unit structures may pyrolize easier than trimethoxyphenol unit structures. The closer research is proceeding.

  • PDF

Research for Pyrolysis of Metal Caps (병뚜껑의 열분해에 대한 연구)

  • Hwang, Jae-young;Jin, Dal-saem;Seo, Moo-Lyong
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1355-1359
    • /
    • 2010
  • The application of metal caps has been continuously increased as real life are extended. Metal caps is usually made of aluminum and polyethylene(PE) as packing. Since metal caps contain 75% aluminum on a weight basis, metal caps may be a valuable source when these were properly recovered. The recovery methods of metal caps have mechanical peeling and incineration. However these are either hard to apply in some case or environmentally unacceptable. So in this investigation, recovery method of aluminum from metal caps was investigated using pyrolysis. The result shows that pyrolysis temperature and pyrolysis time was $450^{\circ}C$ and 120min. respectively. Also 100% of aluminum was recovered from metal caps. Heat content of recovered oil was high enough to use as a fuel representing 7,425.0, 7,793.1, 7,583.2, 7,726.2(cal/g). Heavy metal contens in the oil were under regulatory limit indicating.

Thermogravimetric and Fourier Transform Infrared Analysis of Switchgrass Pyrolysis (스위치그라스 열분해에 대한 TGA-FTIR 분석)

  • Lee, Seong-Beom;Fasina, Oladiran O.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • This study was conducted to investigate the pyrolysis characteristics of switchgrass using TGA-FTIR instrument. Switchgrass is a high yielding perennial grass that has been designated as a potential energy crop, because of its high energy value. Ground switchgrass were pyrolysed at different heating rates of 10, 20, 30, and $40^{\circ}C/min$ in a TGA-FTIR instrument. The thermal decomposition characteristics of switchgrass were analyzed, and the gases volatilized during the experiment were identified. The thermal decomposition of switchgrass started at approximately $220^{\circ}C$, followed by a major loss of weight, where the main volatilization occurred, and the thermal decomposition was essentially completed by $430^{\circ}C$. The pyrolysis process was found to compose of four stages; moisture evaporation, hemicellulose decomposition, cellulose decomposition, and lignin degradation. The peak temperatures for hemicellulose decomposition ($306^{\circ}C$ to $327^{\circ}C$) and cellulose decomposition ($351^{\circ}C$ to $369^{\circ}C$) were increased with greater heating rates. FTIR analysis showed that the following gases were released during the pyrolysis of switchgrass; $CO_2$, CO, $CH_4$, $NH_3$, COS, $C_{2}H_{4}$, and some acetic acid. The most gas species were released at low temperature from 310 to $380^{\circ}C$, which was corresponding well with the observation of thermal decomposition.

Compilation of liquefaction and pyrolysis method used for bio-oil production from various biomass: A review

  • Ahmad, Syahirah Faraheen Kabir;Ali, Umi Fazara Md;Isa, Khairuddin Md
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.18-28
    • /
    • 2020
  • In this paper the authors provide comparative evaluation of current research that used liquefaction and pyrolysis method for bio-oil production from various types of biomass. This paper review the resources of biomass, composition of biomass, properties of bio-oil from various biomass and also the utilizations of bio-oil in industry. The primary objective of this review article is to gather all recent data about production of bio-oil by using liquefaction and pyrolysis method and their yield and properties from different types of biomass from previous research. Shortage of fossil fuels as well as environmental concern has encouraged governments to focus on renewable energy resources. Biomass is regarded as an alternative to replace fossil fuels. There are several thermo-chemical conversion processes used to transform biomass into useful products, however in this review article the focus has been made on liquefaction and pyrolysis method because the liquid obtained which is known as bio-oil is the main interest in this review article. Bio-oil contains hundreds of chemical compound mainly phenol groups which make it suitable to be used as a replacement for fossil fuels.