Browse > Article
http://dx.doi.org/10.4491/eer.2018.419

Compilation of liquefaction and pyrolysis method used for bio-oil production from various biomass: A review  

Ahmad, Syahirah Faraheen Kabir (School of Environmental Engineering, University Malaysia Perlis)
Ali, Umi Fazara Md (School of Environmental Engineering, University Malaysia Perlis)
Isa, Khairuddin Md (School of Environmental Engineering, University Malaysia Perlis)
Publication Information
Abstract
In this paper the authors provide comparative evaluation of current research that used liquefaction and pyrolysis method for bio-oil production from various types of biomass. This paper review the resources of biomass, composition of biomass, properties of bio-oil from various biomass and also the utilizations of bio-oil in industry. The primary objective of this review article is to gather all recent data about production of bio-oil by using liquefaction and pyrolysis method and their yield and properties from different types of biomass from previous research. Shortage of fossil fuels as well as environmental concern has encouraged governments to focus on renewable energy resources. Biomass is regarded as an alternative to replace fossil fuels. There are several thermo-chemical conversion processes used to transform biomass into useful products, however in this review article the focus has been made on liquefaction and pyrolysis method because the liquid obtained which is known as bio-oil is the main interest in this review article. Bio-oil contains hundreds of chemical compound mainly phenol groups which make it suitable to be used as a replacement for fossil fuels.
Keywords
Biomass; Bio-oil; Liquefaction; Pyrolysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chan YH, Yusup S, Quitain AT, Uemura Y, Sasaki M. Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction. J. Supercrit. Fluid. 2014;95:407-412.   DOI
2 Montoya JI, Valdes C, Chejne F, et al. Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: An experimental study. J. Anal. Appl. Pyrol. 2015;112:379-387.   DOI
3 Phan BMQ, Duong LT, Nguyen VD, et al. Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis. Biomass Bioenerg. 2014;62:74-81.   DOI
4 Mesa-Perez JM, Rocha JD, Barbosa-Cortez LA, Penedo-Medina M, Luengo CA, Cascarosa E. Fast oxidative pyrolysis of sugar cane straw in a fluidized bed reactor. Appl. Therm. Eng. 2013;56:167-175.   DOI
5 Varma AK, Mondal P. Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Ind. Crops Prod. 2017;95:704-717.   DOI
6 Henkel C, Muley PD, Abdollahi KK, Marculescu C, Boldor D. Pyrolysis of energy cane bagasse and invasive Chinese tallow tree (Triadica sebifera L.) biomass in an inductively heated reactor. Energ. Convers. Manage. 2016;109:175-183.   DOI
7 Demirbas A. Fuels from biomass. In: Biorefineries. Green energy and technology book series. London: Springer; 2010. p. 33-73.
8 Energy, carbon saving and sustainability [Internet]. [cited 26 February 2018]. Available from: http://clients.junction-18.com/beep/Biomass/#/1.
9 National Statistics. Agriculture in the United Kingdom [Internet]. [cited 15 March 2018]. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/208436/auk-2012-25jun13.pdf.
10 Yang J, Wang X, Ma H, Bai J, Jiang Y, Yu H. Potential usage, vertical value chain and challenge of biomass resource: Evidence from China's crop residues. Appl. Energ. 2014;114:717-723.   DOI
11 Cai W, Liu R. Performance of a commercial-scale biomass fast pyrolysis plant for bio-oil production. Fuel 2016;182:677-686.   DOI
12 Liu Y, Yuan X, Huang H, Wang X, Wang H, Zeng G. Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol-water). Fuel Process. Technol. 2013;112:93-99.   DOI
13 Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel 2014;128:162-169.   DOI
14 Zhou L, Yang H, Wu H, Wang M, Cheng D. Catalytic pyrolysis of rice husk by mixing with zinc oxide: Characterization of bio-oil and its rheological behavior. Fuel Process. Technol. 2013;106:385-391.   DOI
15 Naqvi SR, Uemura Y, Yusup SB. Catalytic pyrolysis of paddy husk in a drop type pyrolyzer for bio-oil production: The role of temperature and catalyst. J. Anal. Appl. Pyrol. 2014;106:57-62.   DOI
16 Abu Bakar MS, Titiloye JO. Catalytic pyrolysis of rice husk for bio-oil production. J. Anal. Appl. Pyrol. 2013;103:362-368.   DOI
17 Hsu C-P, Huang A-N, Kuo H-P. Analysis of the rice husk pyrolysis products from a fluidized bed reactor. Procedia Eng. 2015;102:1183-1186.   DOI
18 Zhao N, Li B-X. The effect of sodium chloride on the pyrolysis of rice husk. Appl. Energ. 2016;178:346-352.   DOI
19 Rout T, Pradhan D, Singh RK, Kumari N. Exhaustive study of products obtained from coconut shell pyrolysis. J. Environ. Chem. Eng. 2016;4:3696-3705.   DOI
20 Gao Y, Yang Y, Qin Z, Sun Y. Factors affecting the yield of bio-oil from the pyrolysis of coconut shell. SpringerPlus 2016;5:333.   DOI
21 Siengchum T, Isenberg M, Chuang SSC. Fast pyrolysis of coconut biomass - An FTIR study. Fuel 2013;105:559-565.   DOI
22 Makibar J, Fernandez-Akarregi AR, Amutio M, Lopez G, Olazar M. Performance of a conical spouted bed pilot plant for bio-oil production by poplar flash pyrolysis. Fuel Process. Technol. 2015;137:283-289.   DOI
23 Ozbay G. Catalytic pyrolysis of pine wood sawdust to produce bio-oil: Effect of temperature and catalyst additives. J. Wood Chem. Technol. 2015;35:302-313.   DOI
24 Nazari L, Yuan Z, Souzanchi S, Ray MB, Xu C (Charles). Hydrothermal liquefaction of woody biomass in hot-compressed water: Catalyst screening and comprehensive characterization of bio-crude oils. Fuel 2015;162:74-83.   DOI
25 Morali U, Yavuzel N, Sensoz S. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char. Bioresour. Technol. 2016;221:682-685.   DOI
26 Yorgun S, Yildiz D. Slow pyrolysis of paulownia wood: Effects of pyrolysis parameters on product yields and bio-oil characterization. J. Anal. Appl. Pyrol. 2015;114:68-78.   DOI
27 Salehi E, Abedi J, Harding TG, Seyedeyn-Azad F. Bio-oil from sawdust: Design, operation, and performance of a bench-scale fluidized-bed pyrolysis plant. Energ. Fuel. 2013;27:3332-3340.   DOI
28 Ozbay G. Pyrolysis of firwood (Abies bornmülleriana Mattf.) sawdust: Characterization of bio-oil and bio-char. Drvna Ind. 2015;66:105-114.   DOI
29 Chen T, Liu R, Scott NR. Characterization of energy carriers obtained from the pyrolysis of white ash, switchgrass and corn stover - Biochar, syngas and bio-oil. Fuel Process. Technol. 2016;142:124-134.   DOI
30 Liu S, Xie Q, Zhang B, et al. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Bioresour. Technol. 2016;204:164-170.   DOI
31 Mante OD, Agblevor FA. Catalytic pyrolysis for the production of refinery-ready biocrude oils from six different biomass sources. Green Chem. 2014;16:3364-3377.   DOI
32 Ravikumar C, Senthil Kumar P, Subhashni SK, Tejaswini PV, Varshini V. Microwave assisted fast pyrolysis of corn cob, corn stover, saw dust and rice straw: Experimental investigation on bio-oil yield and high heating values. Sust. Mater. Technol. 2017;11:19-27.   DOI
33 Liu S, Zhang Y, Fan L, et al. Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis. Fuel 2017;196:261-268.   DOI
34 Tomás-Pejó E, Fermoso J, Herrador E, et al. Valorization of steam-exploded wheat straw through a biorefinery approach: Bioethanol and bio-oil co-production. Fuel 2017;199:403-412.   DOI
35 Biswas B, Pandey N, Bisht Y, Singh R, Kumar J, Bhaskar T. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 2017;237:57-63.   DOI
36 Oudenhoven SRG, Westerhof RJM, Kersten SRA. Fast pyrolysis of organic acid leached wood, straw, hay and bagasse: Improved oil and sugar yields. J. Anal. Appl. Pyrol. 2015;116:253-262.   DOI
37 Patil PT, Armbruster U, Martin A. Hydrothermal liquefaction of wheat straw in hot compressed water and subcritical water-alcohol mixtures. J. Supercrit. Fluid. 2014;93:121-129.   DOI
38 Vezzoli C, Ceschin F, Osanjo L, et al. Energy and sustainable development. In: Designing sustainable energy for all. Springer; 2018. p. 3-22.
39 Report on the availability of biomass sources in Spain: Vineyards and olive groves [Internet]. [cited 7 May 2018]. Available from: https://www.researchgate.net/publication/321760198_Report_on_the_availability_of_Biomass_Sources_in_Spain_vineyards_and_olive_groves.
40 Tan Z, Chen K, Liu P. Possibilities and challenges of China's forestry biomass resource utilization. Renew. Sust. Energ. Rev. 2015;41:368-378.   DOI
41 Torri IDV, Paasikallio V, Faccini CS, et al. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization. Bioresour. Technol. 2016;200:680-690.   DOI
42 Suriapparao DV, Vinu R. Bio-oil production via catalytic microwave pyrolysis of model municipal solid waste component mixtures. RSC Adv. 2015;5:57619-57631.   DOI
43 Sellin N, Krohl DR, Marangoni C, Souza O. Oxidative fast pyrolysis of banana leaves in fluidized bed reactor. Renew. Energ. 2016;96:56-64.   DOI
44 Abdullah N, Sulaiman F, Taib RM, Miskam MA. Pyrolytic oil of banana (Musa spp.) pseudo-stem via fast process. In: AIP Conference Proceeding; 24 April 2015.
45 Charon N, Ponthus J, Espinat D, et al. Multi-technique characterization of fast pyrolysis oils. J. Anal. Appl. Pyrol. 2015;116:18-26.   DOI
46 Kim KH, Kim T-S, Lee S-M, et al. Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis. Renew. Energ. 2013;50:188-195.   DOI
47 Shafie SM, Mahlia TMI, Masjuki HH, Ahmad-Yazid A. A review on electricity generation based on biomass residue in Malaysia. Renew. Sust. Energ. Rev. 2012;16:5879-5889.   DOI
48 Aalto M, Korpinen O-J, Loukola J, Ranta T. Achieving a smooth flow of fuel deliveries by truck to an urban biomass power plant in Helsinki, Finland-An agent-based simulation approach. Int. J. Forest Eng. 2018;29:21-30.   DOI
49 Lora ES, Andrade RV. Biomass as energy source in Brazil. Renew. Sust. Energ. Rev. 2009;13:777-788.   DOI
50 Ericsson K, Werner S. The introduction and expansion of biomass use in Swedish district heating systems. Biomass Bioenerg. 2016;94:57-65.   DOI
51 Mekhilef S, Saidur R, Safari A, Mustaffa WESB. Biomass energy in Malaysia: Current state and prospects. Renew. Sust. Energ. Rev. 2011;15:3360-3370.   DOI
52 Assanee N, Boonwan C. State of the art of biomass gasification power plants in Thailand. Energ. Procedia 2011;9:299-305.   DOI
53 Darabant A, Haruthaithanasan M, Atkla W, Phudphong T, Thanavat E, Haruthaithanasan K. Bamboo biomass yield and feedstock characteristics of energy plantations in Thailand. Energ. Procedia 2014;59:134-141.   DOI
54 Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen KG, Jensen AD. A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A. Gen. 2011;407:1-19.   DOI
55 Papari S, Hawboldt K, Helleur R. Pyrolysis: A theoretical and experimental study on the conversion of softwood sawmill residues to biooil. Ind. Eng. Chem. Res. 2015;54:605-611.   DOI
56 Mazlan MAF, Uemura Y, Osman NB, Yusup S. Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer. Energ. Convers. Manage. 2015;98:208-214.   DOI
57 Ahiekpor JC, Kuye AO, Achaw OW. Optimization of the pyrolysis of hardwood sawdust in a fixed bed reactor using surface response methodology. Lignocellulose 2017;6:98-108.
58 Singh NB, Kumar A, Rai S. Potential production of bioenergy from biomass in an Indian perspective. Renew. Sust. Energ. Rev. 2014;39:65-78.   DOI
59 Cardoen D, Joshi P, Diels L, Sarma PM, Pant D. Agriculture biomass in India: Part 2. Post-harvest losses, cost and environmental impacts. Resour. Conserv. Recycl. 2015;101:143-153.   DOI
60 Oasmaa A, Meier D. Characterisation, analysis, norms and standards. In: Bridgwater AV, ed. Fast pyrolysis of biomass: A handbook. United Kingdom; 2005. p. 19-60.
61 Oasmaa A, Meier D. Analysis, characterization and test methods of fast pyrolysis liquids. In: Bridgwater AV, ed. Fast pyrolysis of biomass: A handbook. Newbury; 2002. p. 23-35.
62 Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: A critical review. Energ. Fuel. 2006;20:848-889.   DOI
63 Abdullah N, Gerhauser H, Sulaiman F. Fast pyrolysis of empty fruit bunches. Fuel 2010;89:2166-2169.   DOI
64 Solikhah MD, Pratiwi FT, Heryana Y, et al. Characterization of bio-oil from fast pyrolysis of palm frond and empty fruit bunch. In: IOP conference series: Materials science and engineering. Volume 349. IOP Publishing; 2018.
65 Chang SH. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenerg. 2014;62:174-181.   DOI
66 Welker C, Balasubramanian V, Petti C, Rai K, DeBolt S, Mendu V. Engineering plant biomass lignin content and composition for biofuels and bioproducts. Energies 2015;8:7654-7676.   DOI
67 Williams CL, Westover TL, Emerson RM, Tumuluru JS, Li C. Sources of biomass feedstock variability and the potential impact on biofuels production. BioEnerg. Res. 2015;9:1-14.
68 Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech 2014;5:337-353.   DOI
69 Iqbal HMN, Ahmed I, Zia MA, Irfan M. Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv. Biosci. Biotechnol. 2011;2:149-156.   DOI
70 Isahak WNRW, Hisham MWM, Yarmo MA, Yun Hin T. A review on bio-oil production from biomass by using pyrolysis method. Renew. Sust. Energ. Rev. 2012;16:5910-5923.   DOI
71 Das P, Ganesh A, Wangikar P. Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass Bioenerg. 2004;27:445-457.   DOI
72 Raveendran K, Ganesh A, Khilar KC. Influence of mineral matter on biomass pyrolysis characteristics. Fuel 1995;74:1812-1822.   DOI
73 Mirza UK, Ahmad N, Majeed T. An overview of biomass energy utilization in Pakistan. Renew. Sust. Energ. Rev. 2008;12:1988-1996.   DOI
74 Wikipedia. Pyrolysis oil [Internet]. [cited 5 September 2018]. Available from: https://en.wikipedia.org/w/index.php?title=Pyrolysis_oil&oldid=845786946.
75 Cai W, Liu R, He Y, Chai M, Cai J. Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor. Fuel Process. Technol. 2018;171:308-317.   DOI
76 Borges FC, Du Z, Xie Q, et al. Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresour. Technol. 2014;156:267-274.   DOI
77 Mullen CA, Boateng AA, Hicks KB, Goldberg NM, Moreau RA. Analysis and comparison of bio-oil produced by fast pyrolysis from three barley biomass/byproduct streams. Energ. Fuel. 2010;24:699-706.   DOI
78 Ba T, Chaala A, Garcia-Perez M, Rodrigue D, Roy C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions. Energ. Fuel. 2004;18:704-712.   DOI
79 Tzanetakis T, Ashgriz N, James DF, Thomson MJ. Liquid fuel properties of a hardwood-derived bio-oil fraction. Energ. Fuel. 2008;22:2725-2733.   DOI
80 Abdul Raman NA, Hainin MR, Abdul Hassan N, Ani FN. A review on the application of bio-oil as an additive for asphalt. J. Teknol. 2015;72:105-110.
81 Mathias J-D, Grediac M, Michaud P. Bio-based adhesives. In: Biopolymers and biotech admixtures for eco-efficient construction materials. Cambridge: Woodhead Publishing; 2016. p. 369-385.
82 Sibaja B, Adhikari S, Celikbag Y, Via B, Auad ML. Fast pyrolysis bio-oil as precursor of thermosetting epoxy resins. Polym. Eng. Sci. 2018;58:1296-1307.   DOI
83 Fache M, Darroman E, Besse V, Auvergne R, Caillol S, Boutevin B. Vanillin, a promising biobased building-block for monomer synthesis. Green Chem. 2014;16:1987-1998.   DOI
84 Nishimura H, Tan L, Sun Z-Y, Tang Y-Q, Kida K, Morimura S. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation. Waste Manage. 2016;48:644-651.   DOI
85 Bledzki AK, Mamun AA, Volk J. Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Compos. Sci. Technol. 2010;70:840-846.   DOI
86 Weil J, Brewer M, Hendrickson R, Sarikaya A, Ladisch MR. Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl. Biochem. Biotechnol. 1998;70-72:99-111.   DOI
87 Sciban M, Radetic B, Kevresan Z, Klasnja M. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresour. Technol. 2007;98:402-409.   DOI
88 Abdul Khalil HPS, Siti Alwani M, Mohd Omar AK. Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources 2006;1:220-232.   DOI
89 Kim SW, Koo BS, Ryu JW, et al. Bio-oil from the pyrolysis of palm and Jatropha wastes in a fluidized bed. Fuel Process. Technol. 2013;108:118-124.   DOI
90 Tsai WT, Lee MK, Chang YM. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J. Anal. Appl. Pyrol. 2006;76:230-237.   DOI
91 Tsai W, Lee M, Chang Y. Fast pyrolysis of rice husk: Product yields and compositions. Bioresour. Technol. 2007;98:22-28.   DOI
92 Worasuwannarak N, Sonobe T, Tanthapanichakoon W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J. Anal. Appl. Pyrol. 2007;78:265-271.   DOI
93 Sellin N, Oliveiraa BG, Marangonia C, Souzaa O, Oliveira APN, Oliveira TMN. Use of banana culture waste to produce briquettes. Italian Assoc. Chem. Eng. 2013;37:439-444.
94 Maheshwari DK. Composting for sustainable agriculture. Switzerland: Springer International Publishing; 2014.
95 Altafini CR, Wander PR, Barreto RM. Prediction of the working parameters of a wood waste gasifier through an equilibrium model. Energ. Convers. Manage. 2003;44:2763-2777.   DOI
96 Yu F, Deng S, Chen P, et al. Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover. Appl. Biochem. Biotechnol. 2007;137-140:957-970.   DOI
97 Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, Hicks KB. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenerg. 2010;34:67-74.   DOI
98 Bridgeman TG, Jones JM, Shield I, Williams PT. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 2008;87:844-856.   DOI
99 Nurul Islam M, Nurul Islam M, Rafiqul Alam Beg M, Rofiqul Islam M. Pyrolytic oil from fixed bed pyrolysis of municipal solid waste and its characterization. Renew. Energ. 2005;30:413-420.   DOI
100 Minowa T, Kondo T, Sudirjo ST. Thermochemical liquefaction of Indonesian biomass residues. Biomass Bioenerg. 1998;14:517-524.   DOI
101 Demirbas A. Calculation of higher heating values of biomass fuels. Fuel 1997;76:431-434.   DOI
102 Module 2: Heterogeneous catalysis. Lecture 18: Catalysts test and Reactors types [Internet]. [cited 11 February 2019]. Available from: https://nptel.ac.in/courses/103103026/module2/lec18/1.html.
103 Sembiring KC, Rinaldi N, Simanungkalit SP. Bio-oil from fast pyrolysis of empty fruit bunch at various temperature. Energ. Procedia 2015;65:162-169.   DOI
104 Vecino Mantilla S, Gauthier-Maradei P, Alvarez Gil P, Tarazona Cardenas S. Comparative study of bio-oil production from sugarcane bagasse and palm empty fruit bunch: Yield optimization and bio-oil characterization. J. Anal. Appl. Pyrol. 2014;108:284-294.   DOI