• Title/Summary/Keyword: Pyro-Starter

Search Result 12, Processing Time 0.017 seconds

Structural Analysis of Sinusoidal Vibration Load for Liquid Rocket Engine System (액체로켓엔진 시스템 정현파 진동 구조해석)

  • Chung, Yong-hyun;Lee, Eun-seok;Park, Soon-young;Yang, Chang-hwan;Jung, Jin-taeg
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.20-23
    • /
    • 2009
  • The structural analysis of liquid rocket engine was performed in the case of sinusoidal vibration load to verify structural safety. The finite element model is composed with main liquid rocket engine components, combustion chamber, turbopump, gas-generator, pyro-starter, main pipes, main valve, heat-exchanger, gimbal-mount and brackets. Natural vibration mode analysis and structural analysis for sinusoidal vibration load were performed. The natural mode frequency of liquid rocket engine is twice than that of launch vehicle. In the case of stress result of sinusoidal vibration load, the part of maximum stress has 1.4 margin, so the engine structure is safe for sinusoidal vibration load.

  • PDF

Surface Gas Temperature of Turbine Blade by Hot Gas Stream of Pyro Starter in Operation Condition (파이로 시동기의 고온 가스에 의한 터빈 블레이드의 표면 가스온도 발달과정 해석)

  • Lee, In-Chul;Kim, Jin-Hong;Koo, Ja-Ye;Lee, Sang-Do;Kim, Kui-Soon;Moon, In-Sang;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.63-67
    • /
    • 2007
  • The high pressure turbopump carries out supplying the oxidizer in the liquid propulsion rocket in the combustion chamber. Because an LRE requires a very short starting time , the turbine at the turbopump experiences high torque that was produced by the high pressure and the high temperature. The purpose of this study is to evaluate a turbine blade surface temperature profiles at initial starting 0 ${\sim}$ 0.5 sec. Using $Fine^{Tm}$/turbo, three dimensional Baldwin-Lomax turbulence models are used for numerically analysis. The turbine is composed of 108 blades total, but only 7 rotors were considered because of periodic symmetry effect. Because of interaction with a bow shock on the suction surface, the boundary layer separates from suction surface at inner area of turbine blade. The averaged temperature of the turbine blade tip at 1000 rpm is higher than that of 9000 rpm. Especially at 1000 ${\sim}$ 9000 rpm, temperatures increases on the hub side of the turbine blade tip. Moreover at 9000 rpm, the temperatures from the hub to the shroud of the blade tip increase as well.

  • PDF