• Title/Summary/Keyword: Pyramidal Structure

Search Result 77, Processing Time 0.027 seconds

Modeling the Influence of Gas Pressure on Droplet Impact Using a Coupled Gas/liquid Boundary Element Method

  • Park, Hong-Bok;Yoon, Sam S.;Jepsen Richard A.;Heister Stephen D.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.89-97
    • /
    • 2006
  • An inviscid axisymmetric model capable of predicting droplet bouncing and the detailed pre-impact motion, influenced by the ambient pressure, has been developed using boundary element method (BEM). Because most droplet impact simulations of previous studies assumed that a droplet was already in contact with the impacting substrate at the simulation start, the previous simulations could not accurately describe the effect of the gas compressed between a failing droplet and the impacting substrate. To properly account for the surrounding gas effect, an effect is made to release a droplet from a certain height. High gas pressures are computationally observed in the region between the droplet and the impact surface at instances just prior to impact. The current simulation shows that the droplet retains its spherical shape when the surface tension energy is dominant over the dissipative energy. When increasing the Weber number, the droplet surface structure is highly deformed due to the appearance of the capillary waves and, consequently, a pyramidal surface structure is formed; this phenomenon was verified with our experiment. Parametric studies using our model include the pre-impact behavior which varies as a function of the Weber number and the surrounding gas pressure.

  • PDF

Extended Bifurcated Hydrogen Bonds Network Material of Copper(II) Complexes with 2-Dimethylaminomethyl-3-hydroxypyridine: Structures and Magnetic Properties

  • Kang, Sung-Kwon;Lee, Hong-Woo;Sengottuvelan, Nallathambi;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.95-99
    • /
    • 2012
  • Two novel copper(II) complexes, [Cu(dmamhp)$(H_2O)_2(SO_4)]_n$ (1) and [Cu(dmamhp)$(NO_3)_2(H_2O)]{\cdot}H_2O$ (2) [dmamhp = 2-dimethylaminomethyl-3-hydroxypyridine] have been synthesized and structurally characterized by single crystal X-ray diffraction analysis. Compound 1 displays a double one-dimensional chains structure, in which each chain is constituted with the distorted octahedral copper(II) complex bridged through bidentate sulfate ligands resulting in a coordination polymer. The bifurcated hydrogen bonds and $\pi-\pi$ interactions play important roles in the formation of the double chains structure. On the other hand, compound 2 adopts a distorted square pyramidal geometry around copper(II) ion and exists as a discrete monomer. There are intermolecular bifurcated hydrogen bonds and $\pi-\pi$ stacking interactions between the monomeric units. The magnetic properties revealed that the paramagnetic behaviors are dominantly manifested and there are no intermolecular magnetic interactions in both compound 1 and 2.

Coordination of an Amino Alcohol Schiff Base Ligand Toward Cd(II)

  • Mardani, Zahra;Hakimi, Mohammad;Moeini, Keyvan;Mohr, Fabian
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • A potentially tetradentate Schiff base ligand, 2-((2-((pyridin-2-ylmethylene)amino)ethyl)amino)ethan-1-ol (PMAE), and its cadmium(II) complex, [$Cd(PMAE)I_2$] (1), were prepared and characterized by elemental analysis, FT-IR, Raman, $^1H$ and $^{13}C$ NMR spectroscopies and single-crystal X-ray diffraction. In the crystal structure of 1, the cadmium atom has a slightly distorted square-pyramidal geometry and a $CdN_3I_2$ environment in which the PMAE acts as an $N_3$-donor. In the crystal packing of the complex, the alcohol and amine groups of the coordinated ligands participate in hydrogen bonding with iodide ions and form $R^2{_2}(14)$ and $R^2{_2}(8)$ hydrogen bond motifs, respectively. In addition to the hydrogen bonds, the crystal network is stabilized by ${\pi}-{\pi}$ stacking interactions between pyridine rings. The thermodynamic stability of the isolated ligand and its cadmium complex along with their charge distribution patterns were studied by DFT and NBO analysis.

DCT-based Embedded Image Sequence Coding and Bit Allocation Scheme (DCT 기반 임베디드 동영상 부호화 및 최적 비트 배분의 기법)

  • Cheong, Cha-Keon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.575-584
    • /
    • 2002
  • This paper presents a novel DCT-based embedded zero-tree coding and optimal bit allocation algorithm for image sequence coding. In order to fully utilize the structure of the conventional standard coding algorithm and improve the coding efficiency, motion estimation and compensation(ME/MC)-DCT hybrid coding structure and a modified zero-tree coding algorithm are applied. After the rearrangement DCT coefficients into pyramidal structure according to their significance on the decoded image quality, the modified embedded zero-tree coding is performed on layered coefficients. Moreover, for a given overall bit rates, a new optimal bit control scheme is proposed to achieve the best decoded image quality in the consecutive frames. The rate control scheme can also provide the equal quality of decoded image with the control of bit rate and distortion for each frame. The various simulation results are provided to evaluate the coding performance of the proposed scheme.

A Novel Al-Bridged Trinuclear Iron(II) Bis(imino)pyridyl Complex with Catalytic Ethylene Polymerization Behavior

  • Long, Zerong;Li, Zhongquan;Ma, Ning;Wu, Biao
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2537-2543
    • /
    • 2011
  • A self-assembled Al-bridged diiminopyridine-based ligand (3) was synthesized and characterized by FT-IR, ESI-MS and NMR spectroscopy. Electron spectral titrations were performed to confirm the formation of a novel trinuclear bis(imino)pyridyl iron(II) complex (4) upon addition of $FeCl_2$ into Al-bridged ligand 3 in methanol solution. Simultaneously, a typical bis(imino)pyridine-iron(II) complex (2) was synthesized and fully characterized. The X-ray crystal study of the iron(II) complex 2 disclosed a five-coordinate, distorted square-pyramidal structure with the tridentate N^N^N ligand and chlorides. The optimal molecular structure of 4 was obtained by means of molecular mechanics, which showed that each iron atom in the complex 4 is surrounded by two chlorides, a tridentate N^N^N ligand and one oxygen atom, supporting considerations about the possibility of six-coordinate geometry from MMAO or the ethylene access. A comparison of 4 with the reference 2 revealed a remarkable decrease of the catalytic activity and MMAO consumption (activity up to $0.41{\times}10^3\;kg\;{mol_{Fe}}^{-1}h^{-1}bar^{-1}$, Al/Fe = 650 for 4 and $7.02{\times}10^3\;kg\;{mol_{Fe}}^{-1}h^{-1}bar^{-1}$, Al/Fe = 1600 for 2).

Synthesis of the Water Dispersible L-Valine Capped ZnS:Mn Nanocrystal and the Crystal Structure of the Precursor Complex: [Zn(Val)2(H2O)]

  • Hwang, Cheong-Soo;Lee, Na-Rae;Kim, Young-Ah;Park, Youn-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1809-1814
    • /
    • 2006
  • The L-Valinate anion coordinating zinc complex, [$Zn(val)_2(H-2O)$], was isolated and structurally characterized by single crystal X-ray crystallography. The crystal possess orthorhombic symmetry with a space group $P2_12_12_1$, Z = 4, and a = 7.4279(2)$\AA$, b = 9.4342(2)$\AA$, c =20.5862(7)$\AA$ respectively. The compound features a penta-coordinate zinc ion in which the two valine anion molecules are directly coordinating the central zinc metal ion via their N (amine) and O (carboxylate) atoms, and an additional coordination to zinc is made by water molecule (solvent) to form a distorted square pyramidal structure. In addition, further synthesis of the valine capped ZnS:Mn nanocrystal from the reaction of [$Zn(val)_2(H-2O)$] precursor with $Na_2S$ and 1.95 weight % of $Mn^{2+}$ dopant is described. Obtained valine capped nanocrystal was water dispersible and was optically characterized by UV-vis and solution PL spectroscopy. The solution PL spectrum for the valine capped ZnS:Mn nanocrystal showed an excitation peak at 280 nm and a very narrow emission peak at 558 nm respectively. The measured and calculated PL efficiency of the nanocrystal in water was 15.8%. The obtained powders were characterized by XRD, HR-TEM, and EDXS analyses. The particle size of the nanocrystal was also measured via a TEM image. The measured average particle size was 3.3 nm.

A Theoretical Study of GaAs Nucleation in GaAs/Si Heteroepitaxy Structure (GaAs/Si Heteroepitaxy 구조에서 GaAs의 초기 핵생성에 관한 이론적 고찰)

  • 최덕균
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.1
    • /
    • pp.51-59
    • /
    • 1991
  • Early stage of GaAs nucleation on Si substrate was theoretically studied by computer simulation. Compared to the constant ledge interaction energy in conventional nucleation theory, functional behavior of ledge-ledge interaction resulted in small size clusters depending on the cluster size and shape. Among various kinds of clusters, the multilayer pyramidal shape GaAs cluster requires smallest excess free energy due to the formation of Ga(111) facet planes. There this result suggests that the defects involved in GaAs/Si are originated from the early stage nucleation.

  • PDF

Optical characteristics of InGaN/GaN quantum dots formed in the apex of pyramidal structure

  • Yeo, Hwan-Seop;Sim, Yeong-Chul;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.240-240
    • /
    • 2016
  • 반도체 양자점은 불연속적인 에너지준위의 특성 때문에 고전적인 빛과는 다른 단일광자를 방출하여 양자정보 처리과정에 기본 요소로써 사용 될 수 있다. III-Nitride (III-N) 반도체 물질은 III족 원소의 구성비를 조절하였을 때 밴드갭 에너지차이가 크므로 깊은 양자 우물을 만들 수 있으며 최근에는 기존에 연구되던 III-Arsenide 기반의 반도체 양자점과 다르게 상온 (300 K) 동작 가능한 단일광자 방출원이 개발되었다.[1] 또한 약한 split-off 에너지 때문에 양자점 모양에 작은 비대칭성만 존재해도 큰 선형편광도를 가질 수 있다. 하지만 III-N 반도체 양자점의 이러한 특성에도 불구하고 이종기판과의 격자상수 불일치에 따른 많은 threading dislocation, 압전효과에 의한 큰 내부전기장에 의해 발광 효율이 떨어지는 등의 문제가 있다. 이를 해결하기 위해 반도체 양자점을 3차원 구조체와 결합하여 threading dislocation 및 내부전기장을 줄이는 연구들이 진행되고 있다.[2] 본 연구에서는 선택적 영역 성장 방식을 통해 마이크로미터 크기를 가지는 피라미드 형태의 3차원 구조체를 이용, 피라미드의 꼭지점에 형성된 InGaN/GaN 양자점의 광학적 특성에 대해 분석하였다. 저온(9 K)에서 마이크로 photoluminescence 측정을 통해 양자점의 발광파장이 피라미드의 옆면의 파장과는 다름을 확인하였다. 여기광의 세기에 따른 양자점의 발광 세기 측정하여 여기광에 선형 비례함을 보이고, 양자점의 편광도를 측정하여 선형 편광임을 확인하였다. 마지막으로, 광량에 대해 시간에 따른 상관관계를 측정함으로써 양자점이 양자 발광체의 특성을 보이는 지 확인하였다.

  • PDF

Investigation into static and dynamic characteristics of ISB panels with the expanded metal as an internally structured material (익스펜디드 금속을 내부 구조체로 가지는 ISB 판넬의 정적.동적 특성 분석)

  • Ahn D.G.;Lee S.H.;Kim M.S.;Hahn G.Y.;Jung C.G.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.832-835
    • /
    • 2005
  • The objective of this research work is to investigate into static and dynamic characteristics of ISB panels with the expanded metal as an internally structured material. In order to investigate static and dynamic characteristics of ISB panels, several experiments, the tensile test, three-point bending test and impact test, are carried out. From the results of the experiments, the mechanical properties, bending stiffness and impact absorption energy of the ISB panel have been obtained. In addition, it has been shown that the static and dynamic characteristics of ISB panel are highly dependent on the crimping angle of the pyramidal structure for the expanded metal.

  • PDF

Investigation of the Polarity in GaN Grown by HVPE (HVPE법으로 성장시킨 GaN의 극성 분석)

  • 정회구;정수진
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.93-104
    • /
    • 2003
  • The crystals of group-Ⅲ nitride semiconductors with wurtzite structure exhibit a strong polarity. Especially, GaN has characteristics of different growth rate, anisotropic electrical and optical properties due to the polarity. In this work, GaN epilayer was grown and the polarities of the crystals were observed by the chemical wet etching and SP-EFM. GaN thin films were deposited on c-plane A1₂O₃ substrate under the variations of growth conditions by HVPE such as the deposition temperature of the buffer layer, the deposition time, the ratio of Group-V and Ⅲ and the deposition temperature of the film. The adquate results were obtained under the conditions of 500℃, 90 seconds, 1333 and 1080℃, respectively. It is observed that the GaN layer grown without the buffer layer has N-polarity and the GaN layer grown on the buffer layer has Ga-polarity. Fine crystal single particles were grown on c-plane A1₂O₃ and SiO₂, layer. The external shape of the crystal shows {10-11}{10-10}(000-1) planes as expected in the PBC theory and anisotropic behavior along c-axis is obvious. As a result of etching on each plane, (000-1) and {10-11}planes were etched strongly due to the N-polarity and {10-10} plane was not affected due to the non-polarity. In the case of the crystal grown on c-plane A1₂O₃, two types of crystals were grown. They were hexagonal pyramidal-shape with {10-11}plane and hexagonal prism with basal plane. The latter might be grown by twin plane reentrant edge (TPRE) growth.