• Title/Summary/Keyword: PyTorch

Search Result 18, Processing Time 0.038 seconds

A Comparative Analysis of Deep Learning Frameworks for Image Learning (이미지 학습을 위한 딥러닝 프레임워크 비교분석)

  • jong-min Kim;Dong-Hwi Lee
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.129-133
    • /
    • 2022
  • Deep learning frameworks are still evolving, and there are various frameworks. Typical deep learning frameworks include TensorFlow, PyTorch, and Keras. The Deepram framework utilizes optimization models in image classification through image learning. In this paper, we use the TensorFlow and PyTorch frameworks, which are most widely used in the deep learning image recognition field, to proceed with image learning, and compare and analyze the results derived in this process to know the optimized framework. was made.

A Comparative Study on the Performance of Graph Based Collaborative Filtering Using PyTorch Geometric (PyTorch Geometric을 이용한 그래프 기반 협업 필터링 성능 비교 연구)

  • Gyoung-Tae Kim;Hee-Gook Jun;JinHyun Ahn;Dong-Hyuk IM
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.673-675
    • /
    • 2023
  • 그래프 데이터는 데이터간의 관계를 효율적으로 분석할 수 있으며, 뛰어난 확장성, 다양한 종류의 데이터들을 쉽게 표현할 수 있어 화학, 의학, 추천시스템등 다양한 분야에 적용하려는 사례가 늘고 있다. 이러한 그래프 데이터를 머신러닝기법에 쉽게 사용할 수 있도록 적용된 것이 GNN모델이다. 그 중 Convolultion기법을 적용한 ConvGNNs 모델이 추천 시스템 등 다양한 분야에서 많이 연구 되고 있다. 본 논문은 실험을 통해 상이한 데이터셋 환경에서 Convolution 그래프 기반 모델들의 성능을 비교하였다.

Classification of mandibular molar furcation involvement in periapical radiographs by deep learning

  • Katerina Vilkomir;Cody Phen;Fiondra Baldwin;Jared Cole;Nic Herndon;Wenjian Zhang
    • Imaging Science in Dentistry
    • /
    • v.54 no.3
    • /
    • pp.257-263
    • /
    • 2024
  • Purpose: The purpose of this study was to classify mandibular molar furcation involvement (FI) in periapical radiographs using a deep learning algorithm. Materials and Methods: Full mouth series taken at East Carolina University School of Dental Medicine from 2011-2023 were screened. Diagnostic-quality mandibular premolar and molar periapical radiographs with healthy or FI mandibular molars were included. The radiographs were cropped into individual molar images, annotated as "healthy" or "FI," and divided into training, validation, and testing datasets. The images were preprocessed by PyTorch transformations. ResNet-18, a convolutional neural network model, was refined using the PyTorch deep learning framework for the specific imaging classification task. CrossEntropyLoss and the AdamW optimizer were employed for loss function training and optimizing the learning rate, respectively. The images were loaded by PyTorch DataLoader for efficiency. The performance of ResNet-18 algorithm was evaluated with multiple metrics, including training and validation losses, confusion matrix, accuracy, sensitivity, specificity, the receiver operating characteristic (ROC) curve, and the area under the ROC curve. Results: After adequate training, ResNet-18 classified healthy vs. FI molars in the testing set with an accuracy of 96.47%, indicating its suitability for image classification. Conclusion: The deep learning algorithm developed in this study was shown to be promising for classifying mandibular molar FI. It could serve as a valuable supplemental tool for detecting and managing periodontal diseases.

Hybrid All-Reduce Strategy with Layer Overlapping for Reducing Communication Overhead in Distributed Deep Learning (분산 딥러닝에서 통신 오버헤드를 줄이기 위해 레이어를 오버래핑하는 하이브리드 올-리듀스 기법)

  • Kim, Daehyun;Yeo, Sangho;Oh, Sangyoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.7
    • /
    • pp.191-198
    • /
    • 2021
  • Since the size of training dataset become large and the model is getting deeper to achieve high accuracy in deep learning, the deep neural network training requires a lot of computation and it takes too much time with a single node. Therefore, distributed deep learning is proposed to reduce the training time by distributing computation across multiple nodes. In this study, we propose hybrid allreduce strategy that considers the characteristics of each layer and communication and computational overlapping technique for synchronization of distributed deep learning. Since the convolution layer has fewer parameters than the fully-connected layer as well as it is located at the upper, only short overlapping time is allowed. Thus, butterfly allreduce is used to synchronize the convolution layer. On the other hand, fully-connecter layer is synchronized using ring all-reduce. The empirical experiment results on PyTorch with our proposed scheme shows that the proposed method reduced the training time by up to 33% compared to the baseline PyTorch.

Simulation-Based Damage Estimation of Helideck Using Artificial Neural Network (인공 신경망을 사용한 시뮬레이션 기반 헬리데크 손상 추정)

  • Kim, Chanyeong;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.359-366
    • /
    • 2020
  • In this study, a simulation-based damage estimation method for helidecks is proposed using an artificial neural network. The structural members that share a connecting node in the helideck are regarded as a damage group, and a total of 37,400 damage scenarios are numerically generated by applying randomly assigned damage to up to three damage groups. Modal analysis is then performed for all the damage scenarios, which are selectively used as either training or validation or verification sets based on the purpose of use. An artificial neural network with three hidden layers is constructed using a PyTorch program to recognize the patterns of the modal responses of the helideck model under both damaged and undamaged states, and the network is successively trained to minimize the loss function. Finally, the estimated damage rate from the proposed artificial neural network is compared to the actual assigned damage rate using 400 verification scenarios to show that the neural network is able to estimate the location and amount of structural damage precisely.

Bioimage Analyses Using Artificial Intelligence and Future Ecological Research and Education Prospects: A Case Study of the Cichlid Fishes from Lake Malawi Using Deep Learning

  • Joo, Deokjin;You, Jungmin;Won, Yong-Jin
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Ecological research relies on the interpretation of large amounts of visual data obtained from extensive wildlife surveys, but such large-scale image interpretation is costly and time-consuming. Using an artificial intelligence (AI) machine learning model, especially convolution neural networks (CNN), it is possible to streamline these manual tasks on image information and to protect wildlife and record and predict behavior. Ecological research using deep-learning-based object recognition technology includes various research purposes such as identifying, detecting, and identifying species of wild animals, and identification of the location of poachers in real-time. These advances in the application of AI technology can enable efficient management of endangered wildlife, animal detection in various environments, and real-time analysis of image information collected by unmanned aerial vehicles. Furthermore, the need for school education and social use on biodiversity and environmental issues using AI is raised. School education and citizen science related to ecological activities using AI technology can enhance environmental awareness, and strengthen more knowledge and problem-solving skills in science and research processes. Under these prospects, in this paper, we compare the results of our early 2013 study, which automatically identified African cichlid fish species using photographic data of them, with the results of reanalysis by CNN deep learning method. By using PyTorch and PyTorch Lightning frameworks, we achieve an accuracy of 82.54% and an F1-score of 0.77 with minimal programming and data preprocessing effort. This is a significant improvement over the previous our machine learning methods, which required heavy feature engineering costs and had 78% accuracy.

A Fire Deteetion System based on YOLOv5 using Web Camera (웹카메라를 이용한 YOLOv5 기반 화재 감지 시스템)

  • Park, Dae-heum;Jang, Si-woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.69-71
    • /
    • 2022
  • Today, the AI market is very large due to the development of AI. Among them, the most advanced AI is image detection. Thus, there are many object detection models using YOLOv5.However, most object detection in AI is focused on detecting objects that are stereotyped.In order to recognize such unstructured data, the object may be recognized by learning and filtering the object. Therefore, in this paper, a fire monitoring system using YOLOv5 was designed to detect and analyze unstructured data fires and suggest ways to improve the fire object detection model.

  • PDF

A Study on Generative Artificial Intelligence-Based Data Augmentation Techniques for Enhancing Object Detection Performance (객체 탐지 성능 향상을 위한 생성형 인공지능 기반 데이터 증강 기법 연구)

  • Dohee Kim;Myongho Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.51-54
    • /
    • 2023
  • 최근 딥러닝 기술의 발달로 물체 탐지를 위한 객체 인식 분야가 기계학습을 접목한 연구가 급격히 증가하고 있다. 하지만, 탐지하려는 물체가 다른 객체에 가려진 경우와 같이 특수한 상황에 대한 데이터의 수량이 부족하여 성능 저하를 야기한다는 점과, 객체 탐지 수행 과정에서 작은 객체의 탐지가 어렵다는 한계점이 있다. 본 연구는 전술한 문제점을 보완할 방법을 제안한다. 데이터 증강 기법을 이용하여 클래스가 부족한 데이터의 양을 늘려 학습 데이터를 증강시켰다. 한편, SRGAN을 사용하여 작은 객체를 확대시킨 뒤 이미지를 합성시켜 데이터를 구성하였다. 제안된 방법은 PyTorch 환경에서 YOLOv5를 수행한 결과, 객체 탐지 성능이 향상되는 것을 확인할 수 있었다.

  • PDF

A Study on the Improvement of YOLOv7 Inference Speed in Jetson Embedded Platform (Jetson 임베디드 플랫폼에서의 YOLOv7 추론 속도 개선에 관한 연구)

  • Bo-Chan Kang;Dong-Young Yoo
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.154-155
    • /
    • 2023
  • 오픈 소스인 YOLO(You Only Look Once) 객체 탐지 알고리즘이 공개된 이후, 산업 현장에서는 고성능 컴퓨터에서 벗어나 효율과 특수한 환경에 사용하기 위해 임베디드 시스템에 도입하고 있다. 그러나, NVIDIA의 Jetson nano의 경우, Pytorch의 YOLOv7 딥러닝 모델에 대한 추론이 진행되지 않는다. 따라서 제한적인 전력과 메모리, 연산능력 최적화 과정은 필수적이다. 본 논문은 NVIDIA의 임베디드 플랫폼 Jetson 계열의 Xavier NX, Orin AGX, Nano에서 딥러닝 모델을 적용하기 위한 최적화 과정과 플랫폼에서 다양한 크기의 YOLOv7의 PyTorch 모델들을 Tensor RT로 변환하여 FPS(Frames Per Second)를 측정 및 비교한다. 측정 결과를 통해, 각 임베디드 플랫폼에서 YOLOv7 모델의 추론은 Tensor RT는 Pytorch에서 약 4.1배 적은 FPS 변동성과 약 2.25배 정도의 FPS 속도향상을 보였다.

Evaluation of maxillary sinusitis from panoramic radiographs and cone-beam computed tomographic images using a convolutional neural network

  • Serindere, Gozde;Bilgili, Ersen;Yesil, Cagri;Ozveren, Neslihan
    • Imaging Science in Dentistry
    • /
    • v.52 no.2
    • /
    • pp.187-195
    • /
    • 2022
  • Purpose: This study developed a convolutional neural network (CNN) model to diagnose maxillary sinusitis on panoramic radiographs(PRs) and cone-beam computed tomographic (CBCT) images and evaluated its performance. Materials and Methods: A CNN model, which is an artificial intelligence method, was utilized. The model was trained and tested by applying 5-fold cross-validation to a dataset of 148 healthy and 148 inflamed sinus images. The CNN model was implemented using the PyTorch library of the Python programming language. A receiver operating characteristic curve was plotted, and the area under the curve, accuracy, sensitivity, specificity, positive predictive value, and negative predictive values for both imaging techniques were calculated to evaluate the model. Results: The average accuracy, sensitivity, and specificity of the model in diagnosing sinusitis from PRs were 75.7%, 75.7%, and 75.7%, respectively. The accuracy, sensitivity, and specificity of the deep-learning system in diagnosing sinusitis from CBCT images were 99.7%, 100%, and 99.3%, respectively. Conclusion: The diagnostic performance of the CNN for maxillary sinusitis from PRs was moderately high, whereas it was clearly higher with CBCT images. Three-dimensional images are accepted as the "gold standard" for diagnosis; therefore, this was not an unexpected result. Based on these results, deep-learning systems could be used as an effective guide in assisting with diagnoses, especially for less experienced practitioners.