• 제목/요약/키워드: Push-Pull

검색결과 545건 처리시간 0.032초

Series Load Resonant High Frequency Inverter with ZCS-PDM Control Scheme for Induction-Heated Fusing Roller

  • Sugimura, Hisayuki;Kwen, Soon-Kurl;Koh, Kang-Hoon;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 학술대회 논문집
    • /
    • pp.415-420
    • /
    • 2005
  • This paper presents the two lossless auxiliary inductors-assisted voltage source type half bridge (single ended push pull: SEPP) series resonant high frequency inverter for induction heated king roller in copy and printing machines. The simple high-frequency inverter treated here can completely achieve stable zero current soft switching (ZCS) commutation for wide its output power regulation ranges and load variations under its constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operating principle is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZCS operation commutation, together with its output effective power regulation characteristics-based on the high frequency PDM strategy. The experimental operating performances of this voltage source SEPP ZCS-PDM series resonant high frequency inverter using IGBTs are illustrated as compared with computer simulation results and experimental ones. Its power losses analysis and actual efficiency are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliance implemented here is proved from the practical point of view.

  • PDF

도시민 유입을 고려한 농촌 서비스 및 인프라 개선 주요 항목 도출 - 복지문화 요인을 중심으로 - (Derivation of Rural Service and Infrastructure Factor Considering Urban-to-rural Migration - Focus on Welfare and Culture -)

  • 배승종;김수진;김대식
    • 농촌계획
    • /
    • 제26권2호
    • /
    • pp.39-49
    • /
    • 2020
  • This study was attempted to grasp the push-pull factors of urban to rural migrants in relation to services and infrastructure of rural welfare and culture. Online and offline survey were conducted for urban residents who were willing to return to the rural area and those who were already returning to the rural area. In the fields of health care, social welfare, and education, it was found that the satisfaction level of urban-to-rural migrants was relatively higher than those of latent urban-to-rural migrants. In the field of culture, leisure and sports, the level of satisfaction and concern were similar, so it was found that the expectations for the field were relatively high before returning rural area. As for the agreement degree to expand support, the demand for emergency medical facilities and dementia care program was the highest, and the demand for health care was found to be relatively high. The results of the survey on the top priority items indicate that latent urban-to-rural migrants require support of facility and space item and expansion of program item, and urban-to-rural migrants have high demand for expansion of program item in all field except healthcare field. The results of this study are expected to provide useful information for establishing the direction of the rural area development project in connection with the revitalization of policy of people return to rural area.

제조업 고용구조변화의 특징 분석 (Structural Change and Employment in Manufacturing Sector -Polarization by Firm Size-)

  • 고상원
    • 기술혁신연구
    • /
    • 제7권1호
    • /
    • pp.14-35
    • /
    • 1999
  • This paper presents the relationship between the pace of structural change and the magnitude of employment growth in the manufacturing sector in OECD countries. To measure the pace of structural change, the compositional change index in value-added in manufacturing sector is introduced. For mid to long-term there seems to be a positive relationship between the pace of structural change and the magnitude of employment growth. In those countries with higher value of the compositional index, the employment growth in manufacturing sector was generally higher. To analyse the characteristics of structural change in manufacturing sector, this paper classifies manufacturing industries into groups: one based on technology, one on orientation, one on wages and one on skills. The international comparison of manufacturing sector's employment patterns based on above four classifications are presented. International comparison suggests that Korean manufacturing sector move into jobs with more skills and knowledge The structural change of SMEs and large firms are compared based on above four classification methods. It is shown that SMEs' employment in low value sectors, that is low-technology, labor-intensive, tow-wage, and unskilled sectors, have risen faster than SMEs' employment in high-technology, science-based, high-wage and skilled sectors. Large firms' employment have been mainly increased in high value sectors. However, the employment growth of both large and small firms have been concentrated on production worker-intensively-using sectors, i.e. unskilled sectors. This widened the wage differential of production workers by firm sizes and concurrently led to severe shortage of production workers for SMEs, which has little ability to pay high wage to production workers because they usually belong to low-wage sectors. Korea need to push SMEs forward to high value sectors. The premise of that is, however, to pull large firms out of production worker-intensively-using sectors.

  • PDF

Non-volatile Molecular Memory using Nano-interfaced Organic Molecules in the Organic Field Effect Transistor

  • 이효영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.31-32
    • /
    • 2010
  • In our previous reports [1-3], electron transport for the switching and memory devices using alkyl thiol-tethered Ru-terpyridine complex compounds with metal-insulator-metal crossbar structure has been presented. On the other hand, among organic memory devices, a memory based on the OFET is attractive because of its nondestructive readout and single transistor applications. Several attempts at nonvolatile organic memories involve electrets, which are chargeable dielectrics. However, these devices still do not sufficiently satisfy the criteria demanded in order to compete with other types of memory devices, and the electrets are generally limited to polymer materials. Until now, there is no report on nonvolatile organic electrets using nano-interfaced organic monomer layer as a dielectric material even though the use of organic monomer materials become important for the development of molecularly interfaced memory and logic elements. Furthermore, to increase a retention time for the nonvolatile organic memory device as well as to understand an intrinsic memory property, a molecular design of the organic materials is also getting important issue. In this presentation, we report on the OFET memory device built on a silicon wafer and based on films of pentacene and a SiO2 gate insulator that are separated by organic molecules which act as a gate dielectric. We proposed push-pull organic molecules (PPOM) containing triarylamine asan electron donating group (EDG), thiophene as a spacer, and malononitrile as an electron withdrawing group (EWG). The PPOM were designed to control charge transport by differences of the dihedral angles induced by a steric hindrance effect of side chainswithin the molecules. Therefore, we expect that these PPOM with potential energy barrier can save the charges which are transported to the nano-interface between the semiconductor and organic molecules used as the dielectrics. Finally, we also expect that the charges can be contributed to the memory capacity of the memory OFET device.[4]

  • PDF

CMP 패드 컨디셔너의 제조공법에 따른 패드 컨디셔닝 특성 (The properties of pad conditioning according to manufacturing methods of CMP pad conditioner)

  • 강승구;송민석;지원호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.362-365
    • /
    • 2005
  • Currently Chemical Mechanical Planarization (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. Especially the CMP pad conditioner, one of the diamond tools, is required to have strong diamond retention. Strong cohesion between diamond grits and metal matrix prevents macro scratch on the wafer. If diamond retention is weak, the diamond will be pulled out of metal matrix. The pulled diamond grits are causative of macro scratch on wafer during CMP process. Firstly, some results will be reported of cohesion between diamond grits and metal matrix on the diamond tools prepared by three different manufacturing methods. A measuring instrument with sharp cemented carbide connected with a push-pull gauge was manufactured to measure the cohesion between diamond grits and metal matrix. The retention force of brazed diamond tool was stronger than the others. The retention force was also increased in proportion to the contact area of diamond grits and metal matrix. The brazed diamond tool has a strong chemical combination of the interlayer composed of chrome in metal matrix and carbon which enhance the interfacial cohesion strength between diamond grits and metal matrix. Secondly, we measured real-time data of the coefficient of friction and the pad wear rate by using CMP tester (CETR, CP-4). CMP pad conditioner samples were manufactured by brazed, electro-plated and sintered methods. The coefficient of friction and the pad wear rate were shown differently according to the arranged diamond patterns. Consequently, the coefficient of friction is increased according as the space between diamonds is increased or the concentration of diamonds is decreased. The pad wear rate is increased according as the degree of diamond protrusion is increased.

  • PDF

동력분산형 고속철도 주행성능 동역학 해석을 위한 기반기술 개발 (Development of fundamental technology for dynamic analysis of the high speed EMU (Electric Multiple Unit))

  • 윤지원;박태원;전갑진;박성문;정광열
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.380-386
    • /
    • 2008
  • The development of a new railway vehicle is under progress through the Next Generation High-Speed Rail Development Project in Korea. Its aim is to develope fundamental technology of the vehicle that can run over 400km/h. The new distributed traction bogie system, 'HEMU'(High-speed Electric Multiple Unit), will be used and is different from that of previously developed high speed railway vehicles. Previous vehicles adopted push-pull type system, which means one traction-car drives rest all of the vehicle. Due to the difference, investigation on dynamic behavior and its safety evaluation are necessary, as a part of verification of the design specification. In the paper, current progresses of researches are presented. And the High-Speed Railway vehicle system is evaluated for a dynamic characteristic simulation. Proper dynamic models including air-suspension system, wheel-rail, bogie and car-body is developed according to the vehicle simulation scenario. The basic platform for the development of dynamic solver is prepared using nodal, modal coordinate system and wheel-rail contact module. Operating scenario is prepared using commercial dynamic analysis program and used for development of dynamic model, which contains many parts such as carbodies, bogies and suspension systems. Furthermore, international safety standard is applied for final verification of the system. Finally, the reliability of the dynamic model will be verified with test results in the further researches. This research will propose a better solution when test results shows a problem in the parts and elements. Finally, the vehicle that has excellent performance will be developed, promoting academic achievement and technical development.

  • PDF

Dedicated preparation for in situ transmission electron microscope tensile testing of exfoliated graphene

  • Kim, Kangsik;Yoon, Jong Chan;Kim, Jaemin;Kim, Jung Hwa;Lee, Suk Woo;Yoon, Aram;Lee, Zonghoon
    • Applied Microscopy
    • /
    • 제49권
    • /
    • pp.3.1-3.7
    • /
    • 2019
  • Graphene, which is one of the most promising materials for its state-of-the-art applications, has received extensive attention because of its superior mechanical properties. However, there is little experimental evidence related to the mechanical properties of graphene at the atomic level because of the challenges associated with transferring atomically-thin two-dimensional (2D) materials onto microelectromechanical systems (MEMS) devices. In this study, we show successful dry transfer with a gel material of a stable, clean, and free-standing exfoliated graphene film onto a push-to-pull (PTP) device, which is a MEMS device used for uniaxial tensile testing in in situ transmission electron microscopy (TEM). Through the results of optical microscopy, Raman spectroscopy, and TEM, we demonstrate high quality exfoliated graphene on the PTP device. Finally, the stress-strain results corresponding to propagating cracks in folded graphene were simultaneously obtained during the tensile tests in TEM. The zigzag and armchair edges of graphene confirmed that the fracture occurred in association with the hexagonal lattice structure of graphene while the tensile testing. In the wake of the results, we envision the dedicated preparation and in situ TEM tensile experiments advance the understanding of the relationship between the mechanical properties and structural characteristics of 2D materials.

Transcutaneous medial fixation sutures for free flap inset after robot-assisted nipple-sparing mastectomy

  • Kim, Bong-Sung;Kuo, Wen-Ling;Cheong, David Chon-Fok;Lindenblatt, Nicole;Huang, Jung-Ju
    • Archives of Plastic Surgery
    • /
    • 제49권1호
    • /
    • pp.29-33
    • /
    • 2022
  • The application of minimal invasive mastectomy has allowed surgeons to perform nipples-paring mastectomy via a shorter, inconspicuous incision under clear vision and with more precise hemostasis. However, it poses new challenges in microsurgical breast reconstruction, such as vascular anastomosis and flap insetting, which are considerably more difficult to perform through the shorter incision on the lateral breast border. We propose an innovative technique of transcutaneous medial fixation sutures to help in flap insetting and creating and maintaining the medial breast border. The sutures are placed after mastectomy and before flap transfer. Three 4-0 nylon suture loops are placed transcutaneously and into the pocket at the markings of the preferred lower medial border of the reconstructed breast. After microvascular anastomosis and temporary shaping of the flap on top of the mastectomy skin, the three corresponding points for the sutures are identified. The three nylon loops are then sutured to the dermis of the corresponding medial point of the flap. The flap is placed into the pocket by a simultaneous gentle pull on the three sutures and a combined lateral push. The stitches are then tied and buried after completion of flap inset.

반도체 제조회사의 근골격계부담작업 유해요인조사 실태와 개선방안 (A Study on the Risk Assessment and Improvement of Musculoskeletal Burden Works in the Semiconductor Manufacturer)

  • 정예영;박재희
    • 한국안전학회지
    • /
    • 제37권1호
    • /
    • pp.49-54
    • /
    • 2022
  • In Korea, companies which have work-related musculoskeletal burden works should have conducted legal risk assessments every three years from 2004 onwards. However, due to problems with the legal definition of work-related musculoskeletal burden works, some companies may have been exempted from the risk assessment even though their workers still experience work-related musculoskeletal pain. For example, the manufacturing process used by a particular semiconductor manufacturing company involved a great deal of legal musculoskeletal bueden works. However, this company eliminated the musculoskeletal burden works by continuously introducing automated processes, and finally, in 2016, all work which was legally defined as musculoskeletal burden work were removed from the company's manufacturing process. Nevertheless, in a 2016 survey, 9.6% of the company's workers still complained of musculoskeletal pain, and in a 2019 survey this proportion actually increased to 15.7%. This incident demonstrates the limitations and problems of the current legal risk assessment of work-related musculoskeletal burden work. Therefore, this study proposes two improvements to solve these problems. Firstly, it is necessary to broaden the current legal definition of work-related musculoskeletal burden works. For example, vibration risk factors and push/pull tasks that are currently missing from the definition should be included. Secondly, it is proposed that a survey on musculoskeletal pain should be conducted for all workers, regardless of whether they are engaged in musculoskeletal burden works. The results of this study could be used to improve the legal risk assessment of work-related musculoskeletal burden works.

Development Plan for the First GMT ASM Reference Body

  • Yang, Ho-Soon;Oh, Chang-Jin;Biasi, Roberto;Gallieni, Daniele
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.76.3-77
    • /
    • 2021
  • GMT secondary mirror system consists of 7 segmented adaptive mirrors. Each segment consists of a thin shell mirror, actuators and a reference body. The thin shell has a few millimeters of thickness so that it can be easily bent by push and pull force of actuators to compensate the wavefront disturbance of light due to air turbulence. The one end of actuator is supported by the reference body and the other end is adapted to this thin shell. One of critical role of the reference body is to provide the reference surface for the thin shell actuators. Therefore, the reference body is one of key components to succeed in development of GMT ASM. Recently, Korea Research Institute of Standards and Science (KRISS) and University of Arizona (UA) has signed a contract that they will cooperate to develop the first set of off-axis reference body for GMT ASM. This project started August 2021 and will be finished in Dec. 2022. The reference body has total 675 holes to accommodate actuators and 144 pockets for lightweighting. The rear surface has a curved rib shape with radius of curvature of 4387 mm with offset of 128.32mm. Since this reference body is placed just above the thin shell so that the front surface shape needs to be close to that of thin shell. The front surface has a concave off-axis asphere, of which radius of curvature is 4165.99 mm and off-axis distance is about 1088 mm. The material is Zerodur CTE class 1 (CTE=0.05 ppm/oC) from SCHOTT. All the actuator holes and pockets are machined normal to the front surface. It is a very complex challenging optical elements that involves sophisticated machining process as well as accurate metrology. After finishing the fabrication of reference body in KRISS, it will be shipped to UA for final touches and finally sent to Adoptica in Italy, in early 2023. This paper presets the development plan for the GMT ASM Reference Body and relevant fabrication and metrology plans.

  • PDF