• Title/Summary/Keyword: Purification plant

Search Result 488, Processing Time 0.026 seconds

Self-purification Capacity of Eutrophic Buk Bay by DO mass Balance (부영양화된 북만의 용존산소 수지에 의한 자정능력)

  • CHOI Woo-Jeung;NA Gui-Hwan;CHUN Young-Yell;PARK Chung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.21-30
    • /
    • 1991
  • In Summer, oxygen-deficient water masses were developed extensively in the closed eutrophic bays such as Chinhae Bay which results in mass mortality of marine organisms and severe decrease the production of the bay every year. Under the circumstances, this study was performed to investigate the oxygen depletion relating to eutrophication, and also to evaluate self-purfication capacity of Buk Bay by dissolved oxygen mass balance in 1988. The mean concentration of total inorganic nitrogen, phosphate phosphorus and chlorophyll-a were $11.06{\mu}g-at/l,\;0.80{\mu}g-at/l\;and\;1.11mg/m^3$ respectively, which were over eutrophication criteria. Oxygen-deficient water mass was formed in July with the minimum concentration of 2.08ml/l(mean) at the bottom of all stations and recovered slowly in August. The decay and reaeration coefficient calculated from dissloved oxygen sag curve were 0.222/day and 0.018ml/l/day, respectively. To maintain above 4ml/l of oxygen to prevent oxygen-deficient water mass, it is recommendable to supply as much as 0.856ml/l/day of dissolved oxygen or should be reduced the same mass loading of BOD from watershed by the construction of wastewater treatment plant.

  • PDF

Engineering Approach to Crop Production in Space (우주에서 작물 생산을 위한 공학적 접근)

  • Kim Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.218-231
    • /
    • 2005
  • This paper reviews the engineering approach needed to support humans during their long-term missions in space. This approach includes closed plant production systems under microgravity or low pressure, mass recycling, air revitalization, water purification, waste management, elimination of trace contaminants, lighting, and nutrient delivery systems in controlled ecological life support system (CELSS). Requirements of crops f3r space use are high production, edibility, digestibility, many culinary uses, capability of automation, short stems, and high transpiration. Low pressure on Mars is considered to be a major obstacle for the design of greenhouses fer crop production. However interest in Mars inflatable greenhouse applicable to planetary surface has increased. Structure, internal pressure, material, method of lighting, and shielding are principal design parameters for the inflatable greenhouse. The inflatable greenhouse operating at low pressure can reduce the structural mass and atmosphere leakage rate. Plants growing at reduced pressure show an increasing transpiration rates and a high water loss. Vapor pressure increases as moisture is added to the air through transpiration or evaporation from leaks in the hydroponic system. Fluctuations in vapor pressure will significantly influence total pressure in a closed system. Thus hydroponic systems should be as tight as possible to reduce the quantity of water that evaporates from leaks. And the environmental control system to maintain high relative humidity at low pressure should be developed. The essence of technologies associated with CELSS can support human lift even at extremely harsh conditions such as in deserts, polar regions, and under the ocean on Earth as well as in space.

Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans

  • Sheng, Miaomiao;Jia, Huake;Zhang, Gongyou;Zeng, Lina;Zhang, Tingting;Long, Yaohang;Lan, Jing;Hu, Zuquan;Zeng, Zhu;Wang, Bing;Liu, Hongmei
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.689-699
    • /
    • 2020
  • Brevibacillus brevis GZDF3 is a gram-positive, plant growth-promoting rhizosphere bacterium (PGPR) isolated from the rhizosphere soil of Pinellia ternata (an important herb in traditional Chinese medicine). The GZDF3 strain produces certain active compounds, such as siderophores, which are the final metabolite products of non-ribosomal peptide synthetase (NRPS) and independent non-ribosomal peptide synthetase (NIS) activity. With the present study, we attempted to investigate the siderophore production characteristics and conditions of Bacillus sp. GZDF3. The antibacterial activity of the siderophores on pathogenic fungi was also investigated. Optimal conditions for the synthesis of siderophores were determined by single factor method, using sucrose 15 g/l, asparagine 2 g/l, 32℃, and 48 h. The optimized sucrose asparagine medium significantly increased the production of siderophores, from 27.09% to 54.99%. Moreover, the effects of different kinds of metal ions on siderophore production were explored here. We found that Fe3+ and Cu2+ significantly inhibited the synthesis of siderophores. The preliminary separation and purification of siderophores by immobilized-metal affinity chromatography (IMAC) provides strong antibacterial activity against Candida albicans. The synergistic effect of siderophores and amphotericin B was also demonstrated. Our results have shown that the GZDF3 strain could produce a large amount of siderophores with strong antagonistic activity, which is helpful in the development of new biological control agents.

A Molecular Study of Rice Black-Streaked Dwarf Virus (벼 흑조위축병 바이러스의 분자생물학적 연구)

  • Park, Jong-Sug;Bae, Shin-Chyul;Kim, Young-Min;Paik, Young-Ki;Kim, Ju-Kon;Hwang, Young-Soo
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.148-153
    • /
    • 1994
  • Rice black-streaked dwarf virus (RBSDV), a member of the plant reoviridae fijivirus group, causes a serious damage for rice production in Korea. To characterize the RBSDV genome, virus particles were produced by feeding of planthopper (Laodelphax striatellus F.) carring RBSDV to maize plants for 2 days. In $30{\sim}40$ days after feeding, the viral particles were purified from the infected maize roots by using $10{\sim}40%$ sucrose gradient centrifugation. After treatment of 10% SDS to remove the viral coat proteins, ten viral double-stranded RNAs were resolved in agrose gel electrophoresis. Total dsRNA was then used to synthesize cDNA by reverse transcriptase and a cDNA library was constructed in the ${\lambda}gt11$ vector. The phages that contain RBSDV cDNA fragments were selected by hybridizing with the random-primed probe prepared from RBSDV dsRNAs. After subcloning of several cDNA fragments into the pUC19 plasmid vector, one clone (pRV3) was chosen for sequencing. The pRV3 clone was shown to be located on the RBSDV genome fragment No.3 by RNA gel-blot analysis. Sequence analysis of the clone revealed that the pRV3 contains two partial open reading frames.

  • PDF

Influence of Spa Sewage on the Water and Soil Pollution and Restoration I. Influence of Spa Sewage on the Pollution of Stream Water and Agricultural Land (온배수 유입 소형하천의 수질 및 토양오염과 회복에 관한 연구: I. 온배수가 인근 소하천과 농업 환경에 미치는 영향)

  • 정연태;이덕배;이경보;김미연;김백호;최민규;박승택
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.337-344
    • /
    • 1999
  • This study was carried out to investigate the influence of spa sewage on water quality and chemical contents in the paddy soil along stream from 1997 to 1998. Concentration of $PO_4, SO_4, Cl, NH_{4}, Ca, Na$ and COD in the spa sewage were lower than standard for agricultural usage, and were lowered as the sewage flew to the into stream. The concentration of $SO_4$in spa sewage was over the criteria for agricultural usage in the inlet, but was lower than criteria for agricultural usage by inlet of non polluted stream water. Concentration of pollutants in the sediment of water channel were the highest in the inlet site. There were no pollutants accumulation in the paddy soil where spa sewage was irrigated. It may be resulted from nutrients uptake of rice plant and self purification of paddy soil. On the while, considering electric conductivity and nitrate in spa sewage, this results suggest that long-term irrigation of the spa sewage may be required general management with some decreasing fertilization.

  • PDF

Bio-Green' Functional Water Supply Influences Mineral Uptake and Fruit Quality In Tsugaru Apples (‘바이오 그린’ 기능수 처리가 사과 쓰가루 품종의 무기성분 흡수와 과실품질에 미치는 영향)

  • Kim, Wol-Soo;Chung, Soon-Ju
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.71-79
    • /
    • 1997
  • Commercial Bio- Green(B.G.) functional water was manufactured through a series of processes : water - ultra-purification - adding catalysts - energy imprinting fermenting with energized water + zeolite and others + photosynthetic bacteria in fermenter longrightarrow filtering. Control(0), 5 or 10 liters per plant of B.G. functional water were supplied to the orchard soil under canopy of 10 year- old ‘Tsugaru’/M26 apple trees on March 20, May 20 and June 20, 1995, respectively. pH and content of Ca and Mg of orchard soil were increased by supply with B.G. functional water. However, P$_2$ $O_{5}$, K, and B contents were not influenced by the treatment. At harvest time soluble solid content of flesh tissue and anthocyanin of fruit skin were increased by the treatment. B.G functional water treatment showed higher root activities, and photosynthesis of leaves than that of control. Also B.G. functional water treatment enhanced Ca content in fruit skin and flesh tissues, whereas not affected N, K, and Mg contents. During storage at 4$^{\circ}C$ cold room, the more volume of B.G. functional water supply showed lower bitter pit symptom. Respiration and ethylene evolution in fruit decreased, while fruit firmness increased by the treatment during storage.

  • PDF

Characteristic of the Permeation Flux of Hollow Fiber Membranes by Process Pressures Change (공정압 변화에 따른 중공사막의 투과플럭스 특성)

  • Lee, Yong-Taek;Kim, Nam-Su;Shin, Dong-Ho
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.318-328
    • /
    • 2007
  • This study was carried out to evaluate the performance of the separate membrane (HF; hollow fiber membrane with polysulfone) process applied with the external membrane types, internal pressure membrane types and external-internal types according to the variations of pressure and membrane pore size in the purification treatment process of the lake water. The maximum permeate flux was average values of 282 LMH and 234 LMH with the pore size of 0.3 and 0.05 ${\mu}m$ respectively in the external pressure membrane process, and 443 LMH and 522 LMH with the pore size of 0.3 and $0.05{\mu}m$ respectively in the internal pressure membrane process. In addition, the maximum permeate flux of the process that was applied with external and internal membrane pressure simultaneously showed the average values of 674 LMH with the pore size of $0.3{\mu}m$, and 648 LMH with the pore size of $0.05{\mu}m$. Therefore, maximum yield per unit area is supposed when the separate membrane that was applied with external and internal pressure simultaneously are used to treat the lake water.

A Study on the Correlation between Odorous Compounds, Actinomycetes and Algae in Drinking Water Source of Nakdong River (낙동강 상수원수 중 이취물질과 방선균 및 조류의 상관관계 연구)

  • Kim, Jeong-A;Kim, Gyeong-A;Yun, Churl-Jong;Park, Hong-Gi;Jung, Eun-Young;Cha, Dong-Jin;Choi, Jin-Taek;Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.213-219
    • /
    • 2013
  • We have investigated the correlation between odorous compounds and actinomycetes in drinking water source of Nakdong River in 2011. Geosmin was mainly detected in the spring and summer seasons (Mar, Aug, and Sep) and 2-MIB was mainly detected in the winter and spring seasons (Feb, Mar and May). The odorous compounds concentrations were highest on March which also overlapped with the peak of actinomycetes, geosmin and 2-MIB were detected highly in the diluted culture solution of isolated actinomycetes strains from Nakdong River. For these reasons we could confirm that odorous compounds on March and August are closely related with actinomycetes. Meanwhile, geosmin increase on September supposed to relate with Microcystis.

Assessment of absorption ability of air pollutant on forest in Gongju-city

  • Eom, Ji-Young;Jeong, Seok-Hee;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.41 no.12
    • /
    • pp.328-335
    • /
    • 2017
  • Background: Some researchers have attempted to evaluate the ecological function of various additional services, away from the main point of view on the timber production of Korean forests. However, basic data, evaluation models, or studies on the absorption of air pollutants related to major plant communities in Korea are very rare. Therefore, we evaluated the functional value of the forest ecosystem in Gongju-city. Plantation manual for air purification, supplied from the Ministry of Environment in Japan, was referred to process and method for assessment of air pollutant absorption. Results: Gross primary production was calculated about average 18.2 t/ha/year. It was a relatively low value in forests mixed with deciduous broad and evergreen coniferous compared to pure coniferous forest. Net primary production was the highest value in deciduous coniferous and was the lowest value in mixed forest with deciduous broad and evergreen broad. And the mean sequestration amount of each air pollutant per unit area per year assessed from gross primary production and concentration of gas was the highest with 75.81 kg/ha/year in $O_3$ and was 16.87 and 6.04 kg/ha/year in $NO_2$ and $SO_2$, respectively. In addition, total amounts of $CO_2$ absorption and $O_2$ production were 716,045 t $CO_2$/year and 520,760 t $O_2$/year in all forest vegetation in Gongju-city. Conclusions: In this study, we evaluated the absorption ability of air pollutant in 2014 on forest in Gongju-city area. Gongju-city has the broad mountain area about 70.3%, and area of deciduous broad leaves forest was established the broadest with 47.4% of genus Quercus. Pg was calculated about average 18.2 t/ha/year. The mean sequestration amount of each air pollutant per unit area per year assessed from Pg and $C_{gas}$ was the highest with 75.81 kg/ha/year in $O_3$ and were 16.87 and 6.04 kg/ha/year in $NO_2$ and $SO_2$, respectively. Absorption rates of $O_3$, $NO_2$, and $SO_2$ were the highest in evergreen coniferous forest about $14.87kgO_3/ha/year$, $3.30kgNO_2/ha/year$, $1.18kgSO_2/ha/year$, and the lowest were $5.95kgO_3/ha/year$, $1.32kgNO_2/ha/year$, and $0.47kgSO_2/ha/year$ in deciduous broad forest. In conclusion, it was evaluated that Japanese model is suitable for estimating air pollutants in Japan to Korean vegetation. However, in Korea, there is a very limited basic data needed to assess the ability of forests to absorption of air pollutants. In this study, the accuracy of a calculated value is not high because the basic data of trees with similar life form are used in evaluation.

A Study on the Filed application of Environmental Friendly Porous Concrete For Retaining Wall (환경친화 옹벽용 포러스콘크리트의 현장적용성에 관한 연구Ⅱ)

  • Kim, Jeong-Hwan;Lee, Nam-Ik;Lee, Jun;Park, Seung-Bum;Jang, Young-Il;Seo, Dae-Suck
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.817-820
    • /
    • 2008
  • The river environments of many streams in korea have been deteriorate through the rapid industrialization and urbanization since the 1960s. In korea, on the other hand, much efforts on the research and project have been made for the restoration of the deteriorated streams to close-to-nature. in order to restore the deteriorated streams, therefore, it is necessary to investigate such advanced technologies and materials. In view of this requirement, various research paths are being taken focusing on coarse aggregates to make multi-functional porous concrete having continuous voids so as to improve water and air permeability, acoustic absorption, water purification and applicability to vegetation. The Purpose of this study is to investigate the method for recovery of the environment in the streams area using porous concrete retaining wall block. the multi-P.O.C block applies for test in the Jangduri-cheon have been monitored planting, stability etc. after 6 months, plant grows flourishing and reconstructed in state such as nature rivers.

  • PDF