• Title/Summary/Keyword: Purification plant

Search Result 487, Processing Time 0.031 seconds

Removal of Geosmin Forming Alga (Anabaena macrospora) by Copper Sulfate (CuSO4에 의한 geosmin 유발조류(Anabaena macrospora)의 제거)

  • Park, Jae-Chung;Park, Jae-Bum;Song, Sung-Il;Kim, Hyun-Suk;Park, Jung-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.521-526
    • /
    • 2006
  • We have studied the possibility of removing Anabaena macrospora by injecting copper sulfate ($CuSO_4{\cdot}5H_2O$) into the raw water of a drinking water purification plant. Anabaena macrospora caused the unpleasant geosmin odor of drinking water in August 2001. The cell break-point of A. macrospora was 0.3 mg/L of $CuSO_4$. We were able to reduce the standing crops of A. macrospora effectively because $CuSO_4$ could break A. macrospora selectively. Because 0.3 mg/L of $CuSO_4$ could break both cells and akinetes, it reduced the possibility of a recurrent problem for them to meet a favorable condition. When $CuSO_4$ was injected in the early growth phase of algae and the mixing intensity was high, A. macrospora could be removed most effectively. The odor caused by A. macrospora was sustained for a while without any sudden change of environmental condition. Therefore, we hope that it could shorten the period of obstacle by injecting the optimal amount of 0.3 mg/L of $CuSO_4$. The water quality, alkalinity, conductivity, hardness and pH didn't changed by the injection of $CuSO_4$.

AI based complex sensor application study for energy management in WTP (정수장에서의 에너지 관리를 위한 AI 기반 복합센서 적용 연구)

  • Hong, Sung-Taek;An, Sang-Byung;Kim, Kuk-Il;Sung, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.322-323
    • /
    • 2022
  • The most necessary thing for the optimal operation of a water purification plant is to accurately predict the pattern and amount of tap water used by consumers. The required amount of tap water should be delivered to the drain using a pump and stored, and the required flow rate should be supplied in a timely manner using the minimum amount of electrical energy. The short-term demand forecasting required from the point of view of energy optimization operation among water purification plant volume predictions has been made in consideration of seasons, major periods, and regional characteristics using time series analysis, regression analysis, and neural network algorithms. In this paper, we analyzed energy management methods through AI-based complex sensor applicability analysis such as LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units), which are types of cyclic neural networks.

  • PDF

Effect of temperature on fractional precipitation for paclitaxel purification

  • Jeon, Soon-Yim;Kim, Jin-Hyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.355-359
    • /
    • 2005
  • Fractional precipitation is a simple, efficient method for pre-purifying paclitaxel from plant cell cultures. The storage temperature of factional precipitation was optimized in terms of the yield and purity of paclitaxel with a fixed methanol concentration in water (61.5%, v/v), paclitaxel content in the crude extract (0.5%, w/v), and storage time (3 days). The greatest yield $({\sim}84%)$ was obtained with storage at a constant temperature $(0^{\circ}C)$ for 3 days. Conversely, the highest purity $({\sim}79%)$ was obtained with stepwise reduction in temperature over 3 days. For a constant storage temperature, the maximum purity $({\sim}67%)$ was obtained at $0^{\circ}C$. There was little difference in the yield of paclitaxel between -20 and $12^{\circ}C$. This pre-purification process serves to minimize solvent usage, and the size and complexity of the high-performance liquid chromatography (HPLC) operation required for paclitaxel purification.

  • PDF

Evaluation of Mesoporous Alumina Adsorbent for the Purification of Paclitaxel (Paclitaxel 정제를 위한 메조기공 알루미나 흡착제 평가)

  • Oh, Hyeon-Jeong;Jung, Kyeong Youl;Kim, Jin-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.176-182
    • /
    • 2013
  • Several types of mesoporous alumina adsorbents with different physical properties were prepared by spray pyrolysis and were used for the separation/purification of the anticancer agent paclitaxel. The pore diameter of the adsorbents had a greater effect than did the surface area and the pore volume on the removal of plant-derived impurities. An appropriate pore diameter (~10.8 nm) was required for effective impurity removal. At a constant pore diameter, the surface area of the adsorbent affected not only the purity but also the yield of paclitaxel. Also, increasing the surface area of the adsorbent resulted in an increase in the adsorption of paclitaxel and impurities (biomass-derived tar and wax components). Removal of these impurities was confirmed by HPLC analysis of the absorbent after the treatment and TGA of the organic substances that were bound to the adsorbent.

Reuse of Eluent by Controlling its Specific Gravity during the Chromatographic Purification of Paclitaxel (크로마토그래피를 이용한 Paclitaxel 정제에서 비중 조절에 의한 Eluent 재사용)

  • Kim, Jin-Hyun
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.366-369
    • /
    • 2007
  • In this study, the feasibility of reusing the eluent was confirmed by monitoring its specific gravity during the chromatographic purification of paclitaxel from plant cell cultures. The specific gravity of the eluent (methanol/water = 70/30, v/v) was measured prior to its elution through the hydrophobic resin column. The measurement showed a specific gravity of 0.853. The discharged eluent from the column outlet was first evaporated under vacuum pressure. The evaporated eluent was collected and condensed into a liquid eluent again, followed by the HPLC analysis in order to check the presence of any trace of impurity. Even if the specific gravity of the liquid eluent is varied from 0.853 as a result of the evaporation and condensation, the eluent can still be reused after it specific gravity is adjusted by the addition of methanol or water. The reuse of the eluent resulted in the paclitaxel yield of 86% with a purity of 95% which were closely similar to those of before the eluent reuse. These results indicate that the strategy of reusing the eluent on the basis of the specific gravity analysis was successfully implemented in this study.

The Water Quality and Purification Load Assessment of Drain Water of Facility Horticulture Areas (시설원예 배출 배액의 수질환경 평가 및 정화 부하량 산정)

  • Son, Jinkwan;Choi, Dekkyu;Kong, Minjae;Yun, Sungwook;Park, Minjung;Kang, Donghyeon
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1199-1208
    • /
    • 2019
  • Korea's protected horticulture is rapidly increasing in scale due to various advantages such as year-round harvesting, labor savings through automation and shortened culture period, and greater income generation. This study was conducted to investigate the impact of protected horticulture on water quality. The results of this study are expected to provide basic data contributing to improvements towards sustainable agriculture and eco-friendly design of protected horticulture complex. The average T-N and T-P loads from vinyl greenhouses were 286.55± 143.98 mg/L and 59.14±13.77 mg/L, respectively and those from glass greenhouses 380.68 ± 150.41 mg/L and 61.85±20.72 mg/L. The annual discharge of wastewater derived from the monthly discharge from the horticulture greenhouses were estimated at 2597 ton/ha, with the annual phosphorus load amounting to 155.3 kg/ha. The average T-N and T-P loads in the tested greenhouse effluents were in excess of 8.3- and 13.5-fold the standards for the Korean wastewater plant effluent. The waste nutrient solution discharged from a protected horticulture complex can cause water contamination. Therefore, there is a need to conduct follow-up research using a water purification system or a trench method to develop a eco-friendly protected horticulture complex for sustainable agriculture.

Theory and Practices of Water Pollution Control by Wetland - a Case Study of Reed Wetland in Baiyangdian Lake

  • Li, Guibao;Zhou, Huaidong;Liu, Fang;Wang, Dianwu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.72-76
    • /
    • 2004
  • Wetland is an important eco-system on the earth and can effectively control agricultural non-point source pollution. Reed is a typical wetland plant for land/inland water ecotone in north China. The studies indicated that reed had a underground rooted-stem, which formed a 'high speeded-connecting vessels' i.e. reed root channel (RRC) in Baiyangdian lake of Hebei province. It spread predominantly along horizontal direction underground and are mainly distributed at 18-75 cm. The results of field work from healthy reed-wetland (HRW) and regarded reed-wetland (RRW) showed that the reed, averagely, in HRW is 4.2 m height, 1 cm diameter, 65/m2 density; in RRW is 2.4 m height, 3 mm diameter, 86/m2 density. These results indicated the regradation of the function of RRC in RRW. The results of laboratory work of sewage purification from reed soil column (RSC) $(0\~100cm)$ and wheat soil column (WSC) showed that the efficiency of purification to sewage, in RSC, is high than in WSC, especially for phosphorus. The efficiency of purification, in RSC, is $92.6\%$ for total phosphorus, $43.5\%$ for total nitrogen, $54.1\%$ fur COD, respectively; in WSC, is $86.0\%$ for total phosphorus, $241.3\%$ for total nitrogen, $29.8\%$ for COD, respectively.

  • PDF

Effect of Zeta Potential on Fractional Precipitation for the Purification of Paclitaxel from Plant Cell Cultures of Taxus chinensis (주목 식물세포(Taxus chinensis) 배양 유래 Paclitaxel 정제를 위한 분별침전에서 제타전위 영향)

  • Ryu, Heung Kon;Kim, Jin-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.114-120
    • /
    • 2014
  • This study evaluated the effect of the zeta potential of silica-alumina on the behavior, in terms of purity, yield, fractional precipitation time, precipitate shape, size of fractional precipitation in the increased surface area, and the fractional precipitation process, for the purification of paclitaxel. As the zeta potential value of silica-alumina increased, the yield of paclitaxel concurrently increased while the precipitation time decreased. The use of alumina with the highest value of the zeta potential (+35.41 mV) as a surface area-increasing material dramatically reduced the precipitation time by 12 h compared with the results of the control. On the other hand, the purity of paclitaxel had almost no effect on changes in the zeta potential of silica-alumina. In addition, the precipitate size was inversely correlated with the absolute value of the zeta potential.

Ultrasound-Assisted Micellar Extraction for Paclitaxel Purification from Taxus chinensis (Taxus chinensis 유래 파클리탁셀 정제를 위한 초음파를 이용한 마이셀 추출)

  • Park, Ji-Min;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.106-111
    • /
    • 2021
  • In this study, an ultrasound-assisted micellar extraction process was developed to efficiently purify the anticancer substance paclitaxel from the plant cell Taxus chinensis. The problem of many extraction steps and long phase separation time in the traditional micellar process could be dramatically improved. The highest paclitaxel yield (~96%, extracted twice) was obtained at 180 W of ultrasonic power and 1.5 h of ultrasonic irradiation time, which was 24.7% higher than that of the traditional method. In addition, the partition coefficient (K) showed a maximum value (24.0) at 180 W of ultrasonic power and 1.5 h of irradiation time. There was no significant difference in the purity of paclitaxel, and the purity of initial paclitaxel (6.81%) increased to 22.0% after purification. Compared to the traditional method, the phase separation time of the back extraction decreased by 40.7-56.2% (ultrasonic power 80 W), 46.3-67.6% (ultrasonic power 180 W), and 51.9-67.6% (ultrasonic power 250 W), respectively. The phase separation time decreased as the ultrasonic power (80-250 W) and irradiation time (0.5-2.5 h) increased.

A Study on Particulate Matter Reduction Effects of Vegetation Bio-Filters by Airflow Volume (공조풍량별 식생바이오필터의 입자상 오염물질 저감효과 연구)

  • Choi, Boo Hun;Kim, Tae Han
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.89-95
    • /
    • 2021
  • As the influence of fine dust on society spreads gradually, the public's interest in indoor air is increasingly rising. Air-purifying plants are drawing keen attention due to their natural purifying function enabled by plant physiology. However, as their fine dust reduction mechanism is limited to adsorption only, vegetation bio-filters that optimize purification effects through integration with air-conditioning systems is rising as an alternative. In accordance with the relevant standard test methods, this study looked into the fine dust reduction assessment method by air-conditioning airflow volume that can be used for the industrial spread of vegetation bio-filters. In the case of PM10 at 300 ㎍/m3, it was in the order of EG-B(3,500CMH, 29 min.) < EG-A (2,500CMH, 37 min.) < CG(0CMH, 64 min.) for reaching the maintenance level (100 ㎍/m3) of publicly used facilities. For reaching the WHO Guideline(50 ㎍/m3) requirement, it was in the order of EG-B (51 min.) < EG-A (160 min.) < CG (170 min.). In the case of PM2.5, it was in the order of EG-B (26 min.) < EG-A (33 min.) < CG (57 min.) for reaching the maintenance level (50 ㎍/m3) of publicly used facilities. It was in the order of EG-B (48 min) < EG-A (140 min) < CG (158 min) for reaching the WHO Guideline (25 ㎍/m3) requirement. The findings from the analysis showed that fine dust can be reduced most efficiently when the system is operated at 3,500CMH level. The limitation of this study is that due to the absence of a way of assessing the stress of plants in vegetation bio-filters, generating optimal air-conditioning air flow of the relevant system and economics analysis against the existing facility-type air purification system have been clarified, which should be explored further though follow-up studies.