• 제목/요약/키워드: Pure water

검색결과 1,125건 처리시간 0.031초

수중음에 대한 고등어 어군의 반응 (A Response of the Shoal of Chub Mackerel ( Scomber Japonics , HOVTTYUN ) to Underwater Sound)

  • 서두옥
    • 수산해양기술연구
    • /
    • 제25권1호
    • /
    • pp.12-17
    • /
    • 1989
  • 고등어 낚시어장에서 150Hz~200Hz의 순음과 단속순음을 수중스피커로 수중에 방성하였을 때 고등어 어군의 반응과 어선의 보조기관의 수중소음을 측정\ulcorner분석한 결과를 요약하면 다음과 같다. 1. 보조기관만을 운전하였을 때 수중소음의 중심주파수와 음압레벨은 수심 20m에서 각각 500Hz, 146.8dB이었다. 2. 주파수 150Hz와 200Hz의 순음의 음압레벨은 수심 30m, 70m, 120m에서 각각 141.0dB와 146.6dB, 120.0dB와 126.6dB, 114.3dB와 120.5dB이였다. 3. 수중음을 방성해서 5분 전후에 고등어 어군이 유집반응을 보였다. 4. 주파수 150Hz와 200Hz의 순음보다는 단속순음이 좋은 유집반응을 나타냈다

  • PDF

디젤기관에 있어서 개선 미강유 연료의 배기 배출물 특성에 관한 연구 (A Study on Characteristics of Exhaust Emissions in a Diesel Engine with Improved Rice Bran Oils as a Fuel)

  • 배명환;하정호
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.12-23
    • /
    • 2004
  • The effects of improved rice bran oil on the characteristics of exhaust emissions have been experimentally examined by a single cylinder, four cycle, direct injection, water-cooled agricul-tural diesel engine operating at several loads and speeds. The experiments are conducted with light oil, rice bran oil, and improved rice bran oil as a fuel. The fuel injection timing is fixed to 22$^{\circ}$ BTDC regardless of fuel types, engine loads and speeds. To reduce the viscosity of rice bran oil, it is used with the methods of heating, methyl ester and ultrasonic system in a highly viscous rice bran oil. In this study, it is found that the brake specific fuel consumption rate of light oil is the lowest and that of improved rice bran oils is lower than that of pure rice bran oil, and NO$_{x}$ emissions of light oil are the lowest and those of pure rice bran oil are the high- est, while soot emissions of light oil are the highest and those of pure and improved rice bran oils are lower than that of light oil. However these results are not amply satisfied with the emissions regulation limit using the pure and improved rice bran oil as fuels in diesel engines.s.

Estimating UCS of cement-grouted sand using characteristics of sand and UCS of pure grout

  • Lee, Changho;Nam, Hongyeop;Lee, Woojin;Choo, Hyunwook;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.343-352
    • /
    • 2019
  • For quality control and the economical design of grouted sand, the prior establishment of the unconfined compressive strength (UCS) estimating formula is very important. This study aims to develop an empirical UCS estimating formula for grouted sand based on the physical properties of sands and the UCS of cured pure grout. Four sands with varying particle sizes were grouted with both microfine cement and Ordinary Portland cement. Grouted specimens were prepared at three different relative densities and at three different water-to-cement ratios, and unconfined compression tests were performed. The results demonstrate that UCS of grouted sand can be expressed as the power function of the UCS of cured pure grout: $UCS_{grouted\;sand}/1MPa=A_{soil}{\cdot}(UCS_{pure}/1MPa)^N$. Because the exponent N strongly depends on the combination of pore area and pore size, N is expressed as the function of porosity (n) and specific surface ($S_a$). Additionally, because $S_a$ determines the area of the sand particle that cement particles can adsorb and n determines the number of cementation bondings between sand particles, $A_{soil}$ is also expressed as the function of n and $S_a$. Finally, the direct relationship between $A_{soil}$ and N is also investigated.

Transfer Efficiency of Underwater Optical Wireless Power Transmission Depending on the Operating Wavelength

  • Kim, Sung-Man;Kwon, Dongyoon
    • Current Optics and Photonics
    • /
    • 제4권6호
    • /
    • pp.571-575
    • /
    • 2020
  • Optical wireless power transmission (OWPT) is a good candidate for long-distance underwater wireless power transmission. In this work we investigate the transmission efficiency of underwater OWPT, depending on the operating wavelength. We consider four operating wavelengths: infrared, red, green, and blue. We also consider the cases of pure water and sea water for the working conditions. Our results show that it is necessary to select the operating wavelength of underwater OWPT according to the transmission distance and water type of the target application.

고온 시편의 급랭 시 산화철 나노유체가 최소막비등점에 미치는 영향에 대한 실험적 연구 (Experimental Study on Effect of Water-based Iron(III) Oxide Nanofluid on Minimum Film Boiling Point During Quenching of Highly Heated Test Specimen)

  • 정찬석;황경섭;이치영
    • 한국안전학회지
    • /
    • 제35권5호
    • /
    • pp.128-136
    • /
    • 2020
  • In the present experimental study, the effect of water-based iron(III) oxide nanofluid on the MFB(Minimum Film Boiling) point during quenching was investigated. As the highly heated test specimen, the cylindrical stainless steel rod was used, and as the test fluids, the water-based iron(III) oxide nanofluids of 0.001 and 0.01 vol% concentrations were prepared with the pure water. To examine the effect of location in the test specimen, the thermocouples were installed at the bottom and middle of wall, and center in the test specimen. Through a series of experiments, the experimental data about the influences of nanofluid concentrations, the number of repeated experiments, and locations in the test specimen on the reaching time to MFB point, MFBT(Minimum Film Boiling Temperature), and MHF(Minimum Heat Flux) were obtained. As a result, with increasing the concentration of nanofluid and the number of repeated experiments, the reaching time to MFB point was reduced, but the MFBT and MHF were increased. In addition, it was found that the effect of water-based iron(III) oxide nanofluid on the MFB point at the bottom of wall in the test specimen was observed to be greater than that at the middle of wall and center. In the present experimental ranges, as compared with the pure water, the water-based iron(III) oxide nanofluid showed that the maximum reduction of reaching time to MFB point was about 53.6%, and the maximum enhancements of MFBT and MHF were about 31.1% and 73.4%, respectively.

Reactive modification of PVC membranes for the improved performance

  • Jhaveri, Jainesh H.;Patel, Chetan M.;Murthy, Z.V.P.
    • Membrane and Water Treatment
    • /
    • 제9권6호
    • /
    • pp.385-392
    • /
    • 2018
  • Poly vinyl chloride (PVC) was chemically modified, and used for ultrafiltration to analyze the performance. Non-solvent induced phase separation (NIPS) method was used to prepare membranes. The neat PVC membrane was casted and used as a control membrane. Modified membrane was prepared by reacting PVC with ethanolamine (EA) in the casting solution (labeled as CM-PVC). Pure water permeability (PWP) was evaluated by measuring pure water flux. Humic acid was used as model foulant solute to analyze flux and rejection ability of membranes. Flux and rejection data of neat and modified membranes were compared to prove the improvement in the filtration performance. The experimental results showed that for PVC and CM-PVC, PWP was calculated to be ~64 and ${\sim}143L/m^2{\cdot}h$, respectively, and the rejection of humic acid was found to be 98% and 100%, respectively. TGA was carried out to analyze the effect of chemical modification on the thermal stability of polymer. FT-IR analysis was another characterization technique used for the comparative study.

Planar Motion Mechanism Test of the Mobile Harbor Running in Design Speed in Circulating Water Channel

  • Yoon, Hyeon-Kyu;Kang, Joo-Nyun
    • 한국항해항만학회지
    • /
    • 제34권7호
    • /
    • pp.525-532
    • /
    • 2010
  • Mobile Harbor (MH) is a new transportation platform that can load and unload containers onto and from very large container ships at sea. It could navigate near harbors where several vessels run, or it could navigate through very narrow channels. In the conceptual design phase when the candidate design changes frequently according to the various performance requirements, it is very expensive and time-consuming to carry out model tests using a large model in a large towing tank and a free-running model test in a large maneuvering basin. In this paper, a new Planar Motion Mechanism(PMM) test in a Circulating Water Channel (CWC) was conducted in order to determine the hydrodynamic coefficients of the MH. To do this, PMM devices including three-component load cells and inertia tare device were designed and manufactured, and various tests of the MH such as static drift test, pure sway test, pure yaw test, and drift-and-yaw combined test were carried out. Using those coefficients, course-keeping stability was analyzed. In addition, the PMM tests results carried out for the same KCS (KRISO container ship) were compared with our results in order to confirm the test validity.

Combination of Sequential Batch Reactor (SBR) and Dissolved Ozone Flotation-Pressurized Ozone Oxidation (DOF-PO2) Processes for Treatment of Pigment Processing Wastewater

  • Kim, Jeong-Hyun;Kim, Hyung-Suk;Lee, Byoung-Ho
    • Environmental Engineering Research
    • /
    • 제16권2호
    • /
    • pp.97-102
    • /
    • 2011
  • This study investigates the treatment of pigment wastewater using a sequential batch reactor (SBR) followed by dissolved ozone flotation-pressurized ozone oxidation treatement (DOF-$PO_2$). The process efficiency has been evaluated at the lab scale on the basis of water quality parameters. In addition, the effect of pure oxygen and air was investigated on the removal of COD, BOD, and TN in the SBR process. It was observed that under comparable conditions the removal efficiencies of these water quality parameters using pure oxygen and air were similar. The effect of the recycle rate was also investigated for its impact on the water quality parameters using different ozone dissolving pressures in a DOF process in order to optimise conditions. The results conclude that the use of an SBR and ozone contact by DOF-$PO_2$ is a highly effective treatment for pigment wastewater and aids in the achievement of effluent discharge criteria.

Enhanced anti-inflammatory activity of curcumin, a naturally occurring pigment in turmeric via cyclodextrin complexation

  • Kohli, K;Ali, J;Najmi, AK;Anwer, MT;Ansari, MJ
    • Advances in Traditional Medicine
    • /
    • 제7권2호
    • /
    • pp.121-127
    • /
    • 2007
  • Curcumin, a dietary pigment responsible for the yellow color of curry, has been used for the treatment of inflammatory diseases and exhibits a variety of pharmacological effects such as anti- inflammatory, anti-tumor, anti-oxidant, and anti-viral activity. In order to examine the potency of the curcumin in inflammation we used carrageenan induced rat hind paw odema model. As curcumin is practically water insoluble, it is hypothesized that pharmacological activity of curcumin could be improved by enhancing its water solubility. Water soluble complexes of curcumin with cyclodextrins were prepared and screened for greater solubility. Pure curcumin 100 mg/kg body weight along with curcumin complexes equivalent to 100 mg/kg body weight of pure curcumin were tested for the anti-inflammatory activity in Wister rats male rats using carrageenan induced hind paw edema model and compared with that of the reference compound diclofenac sodium at a dose level of 10 mg/kg body weight. Results were statistically analyzed using ANOVA. All the treatment groups showed statistically significant anti-inflammatory activity compared with that of vehicle control and positive control.

수소와 산소를 이용한 가스터빈의 구동에 관한 실험 연구 (An Experimental Study about the Running of a Gas Turbine by using Hydrogen and Oxygen)

  • 강진성;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제8권1호
    • /
    • pp.5-10
    • /
    • 1997
  • Because of environmental pollution and reserve limitations of fossil fuels, several alternative energies have been developing. One of them, the hydrogen is researched as a highly probable solution. In this study pure hydrogen gas and oxygen gas are burned in combustor to reduce the emission, and a gas turbine is used. Cooling water around the combustor recovers the cooling heat loss to useful work by being expanded from liquid to vapor, being injected into the combustor and making pressure rise with working fluid to get more turbine power. Because pure hydrogen and oxygen are used, there is no carbonic emission such as CO, $CO_2$, HC nor $NO_x$, and $SO_x$. The power is obtained by turbine system, which makes lower noise and vibration than any reciprocating engine. Running of a turbine is searched under various conditions of hydrogen flow rate and water injection rate. Maximum speed of the turbine is obtained when the combustion reaches steady state. It is enable to determine the optimum rate between hydrogen flow and water injection which makes turbine run maximum speed.

  • PDF