• Title/Summary/Keyword: Pure water

Search Result 1,125, Processing Time 0.028 seconds

Recent Trend of Ultra-Pure Water Producing Equipment

  • Motomura, Yoshito
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.121-147
    • /
    • 1996
  • Since 1980, the water quality of ultra-pure water has been rapidly improved, and presently ultra-pore water producing equipment for 64Mbit is in operation. Table 1 shows the degree of integration of DRM and required water quality exlmple. The requirements of the ultra-pure water for 64Mbit are resistivity: 18.2 MQ/cm or higher, number of particulates: 1 pc/ml or less (0.05 $\mu$m or larger). bacteria count: 0.1 pc/l or less. TOC (Total Organic Carbon, index of organic snbstance) : 1ppb or less, dissolved oxygen: 5ppb or less, silica: 0.5ppb or less, heavy metal ions: 5ppb or less. The effect of metals on the silicon wafer has been well known, and recently it has been reported that the existence of organic substance in ultra-pure water is closely related to the device defect, drawing attention. It is reported that if organic substance sticks to the natural oxidation film, the oxide film remaims on the organic substance attachment in the hydrofluoric acid treatment (removal of natural oxidation film). The organic substance forms film on the silicon wafer, and harmful elements such as metals and N.P.S., components contained in the organic substance and the bad effect due to the generatinn of silicon carbide cannot be forgotten. In order to remove various impurities in raw water, many technological develoments (membrane, ion exchange, TOC removal, piping material, microanalysis, etc.) have been made with ultra-pure water producing equipment and put to practical use. In this paper, technologies put to practical use in recent ultra-pure vater producing equimeut are introduced.

  • PDF

Comparison of Fire Extinguishing Effects for Water Mist Additives (미분무수 첨가제의 소화효과 비교)

  • Kim, Seung Il;Shin, Chang Sub
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.23-28
    • /
    • 2013
  • In order to improve extinguishing performance of water mist, many studies of additives have been conducted. In this study, viscosity agent which has the ability to improve extinguishing performance by adhering to the surface on fire was used and fluorine-free surfactant was also added to water to enhance water's wetting ability. This study aimed to verify optimal concentration of extinguishing of additives according to fire source and extinguishing performance by comparison with pure water. In case of wood crib fire, the results show that flame suppression and extinguishing time of sodium alginate 0.4 wt.% are 3.4 times and 2.2 times shorter than those of pure water in 0.2 MPa respectively. It seems that large amount of water adhere to surface on fire, thus cooling effect on surface was enhanced. Also water consumption of sodium alginate 0.4wt.% is up to 65% lower than that of pure water. In case of heptane fire, extinguishing time of cocobetaine 0.1 wt.% is 9.7 times shorter than that of pure water in 0.2 MPa. It is thought that because cocobetaine can block oxygen and suppress oil mist by making emulsion film on fire surface due to a low surface tension. On the other hand, water consumption of cocobetaine 0.1 wt.% is 92% lower than that of pure water.

Characterization of Methanol-Water and Acetonitrile-Water Mixtures Using Iterative Target Transform Factor Analysis on Near Infrared Absorption Spectra (근적외선흡광스픽트럼에 대한 반복목표변환인자분석에 의한 메탄올-물 혼합액 및 아세토니트릴 -물 혼합액의 특성 확인)

  • 박영주;조정환
    • YAKHAK HOEJI
    • /
    • v.48 no.1
    • /
    • pp.6-12
    • /
    • 2004
  • Near-infrared spectra of methanol-water mixtures and acetonitrile-water mixtures were acquired to find interactions between solvents widely used for reverse-phase liquid chromatography. Mixtures were prepared to give a series of increasing mole fractions of methanol or acetonitrile in water. Data matrices of acquired spectra were analyzed to determine the proper number of principal components of each mixture system using Malinowski's factor indicator function. Initial guess of score matrix and loading matrix were calculated by nonlinear iterative partial least squares (NIPALS) algorithm for faster computation. Iterative target transform factor analysis (ITTFA) was applied to convert the initial estimation of score matrix to true concentration profile and loading matrix to pure spectra of pure components of the mixtures. In case of methanol-water the number of principal components was found to be 4 and those initial guess of factors were converted to the pure spectra of water methanol and two kinds of complexes. In case of acetonitrile-water the number of pure components of the mixtures was found to be 3 and the pure spectrum of acetonitrile-water complex was found. The nonlinear characteristics of concentration profiles of complexes in the solvent mixtures may give a good criteria in understanding their elution characteristics in reverse-phase liquid chromatogrsphy.

The Development of Nonvolatile Residue (NVR) Particle Monitoring System in Ultra Pure Water (초순수 물(Ultra Pure Water)내 비휘발성 잔류 물질(Nonvolatile Residue, NVR)의 모니터링을 위한 NVR 측정시스템의 개발)

  • Chung, Hyeok;Ahn, Jin-Hong;Ahn, Kang-ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.55-59
    • /
    • 2010
  • In this study, we developed nonvolatile residue (NVR) real-time monitoring system to measure the nonvolatile residue particle in ultra pure water (UPW). This device has a capability of measuring 4 different channels, i.e., 10 nm, 30 nm, 50 nm, and 100 nm. Until now, the light scattering method to detect RAE(residue after evaporation) was the only choice. However, this method can detect RAE larger than ca. 50 nm. In ultra pure water, RAE particles are usually very small and hard to detect with conventional laser scattering devices. To detect very small RAEs, a new system is developed and tested. The system consists of an atomizer that generates RAE particles and a four channel condensation particle counter (CPC). During the several months' operation in manufacturing line, the system was successfully tested and showed reliable results.

The Effect of Absorption Water on Thermal Properties of Pure Linen and Linen Blended Woven Fabrics (마직물 및 마혼방직물의 온열특성에 대한 흡습의 영향)

  • Kwon, Oh-Kyung;Yi, Chang-Mi;Sung, Woo-Kyung
    • Fashion & Textile Research Journal
    • /
    • v.1 no.2
    • /
    • pp.160-165
    • /
    • 1999
  • The thermal properies of the pure linen fabrics available in the market and linen blended woven fabrics were measured at the moisture content of 0%, 20%, 40% and 60% using KES-F7 system (Thermo Iabo II type). The experimental properties were statistically analyzed by the rate of water absorbent. The main results were as follows; There is a positive correlation between the thermal insulation value (TIV) and thickness of pure linen fabrics and linen blended woven fabrics by water absorption. Whereas an negative correlation exists between the TIV and cover factor. There is a high positive correlation among the thermal conductivity (k), thickness and weight of pure linen fabrics and linen blended woven fabrics by water absorption. Wherase a high negative correlation exist between the k and air' permeability (Ap). There is a high positive correlation between the feeling of warmth/coldness and bulk density of pure linen and linen blended woven fabrics by water absorption. Wherase a high negative correlation exists between the feeling of warmth/coldness and porosity. There is a negative correlation between TIV and $q_{max}$ of pure linen fabrics and linen blended woven fabrics. The higher the rate of water absorbent, the lower the TIV. This means that TIV decreases by water absorption. As for the thermal property by rate of water absorbent $q_{max}$ and k increase by water absorption and reach max-value at 60% rate of water absorbent. The TIV decreases by water absorption and has +value at 0% rate of water absorbent, whereas it has -value with a feeling of coldness at 20%, 40%. and 60% rate of water absorbent.

  • PDF

The Correlation Analysis of Fluid Intake, Skin Hydration and Skin pH of College Students (대학생의 수분섭취, 피부 수분보유도 및 피부 pH와의 관계)

  • Kim, Nam-Jo;Hong, Hae Sook
    • Journal of Korean Biological Nursing Science
    • /
    • v.17 no.2
    • /
    • pp.132-139
    • /
    • 2015
  • Purpose: The purpose of this study was to verify the correlation analysis between fluid intake on skin hydration and pH of college students. Methods: The subjects were 129 female nursing students in D city. Data were collected by a self-administered questionnaire, using a skin moisture checker and skin pH meter on faces, hands, and feet. The collected data were analyzed by descriptive statistics, t-test, ANOVA, and Pearson correlation analysis, using SPSS WIN, 20. Results: The daily fluid intake was composed of 57% pure water, 21% caffeinated beverages, 22% non-caffeinated beverages. There were significant differences in average skin hydration on the three body parts according to pure water, caffeinated beverages, and non-caffeinated beverages; however, there was no significant difference measured by fluid intake. There was a significant positive correlation between fluid intake and skin hydration: between pure water and skin hydration. There was significant negative correlation between caffeinated beverages and skin hydration: between non-caffeinated beverages and skin hydration. Conclusion: The results suggest that fluid intake, pure water, caffeinated beverages, and non-caffeinated beverages have an effect on skin hydration and pH. Therefore, it is good to increase the amount of fluid intake but, it is recommended to increase the amount of intake of pure water rather than beverages to improve skin status.

Recent Trend of Ultra-Pure Water Producing Equipment

  • Motomura, Yoshito
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.141-156
    • /
    • 1996
  • For ultra-pure water, the removal of various impirities is required, and the requirement level is rising year by year. To cope with this problem, various removing technologies and system technologies have been developed and the introduction of new materials for the piping, etc. to form the system have been positively made. For the element technologies to be used for ultra-pure water production, their range will be expanded from the technological and economic viewpoints. Therefore, it is absolutely necessary to develop trace analysis evaluation technologies for ultra-pure water. Especially to raise the analytical level of heavy metals and organic substances is important. It is also important to establish individual analysis methods of organic substances. It is expected that the analytical methods will be established and new treating methods will be put to practical use in the near future.

  • PDF

Study on Methane Hydrate Formation in Seawater and Pure Water (해수와 순수물에서 메탄 하이드레이트 생성에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.34-40
    • /
    • 2009
  • $1m^3$ hydrate of pure methane can be decomposed to the maximum of $216m^3$ methane at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18-24% less than the liquefied transportation. In the present investigation, experiments and theoretical calculation carried out for the formation of methane hydrate in NaCl 3.5wt% solution. The results show that the equilibrium pressure in seawater is more higher than that in pure water, and methane hydrate could be formed rapidly during pressurization if the subcooling is maintained at 9K or above in seawater and 8K or above in pure water, respectively. Also, amount of consumed gas volume in pure water is more higher that in seawater at the same experimental conditions. Therefore, it is found that NaCl acts as a inhibitor.

Condensation oscillation characteristic of steam with non-condensable gas through multi-hole sparger at low mass flux

  • Dandi Zhang;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.780-791
    • /
    • 2023
  • To study oscillation characteristic of steam and non-condensable gas direct contact condensation through multi-hole sparger at low mass flux, a series of experiments of pure steam and mixture gas condensation have been carried out under the conditions of steam mass flux of 20-120kg/m2s, water temperature of 20-95 ℃ and mass fraction of non-condensable gas of 0-5%. The regime map of pure steam condensation through multi-hole sparger is divided into steam chugging, separated bubble, aggregated bubble and escaping aggregated bubble. The bubbles behavior of synchronization in the same hole columns and desynchronized excitation between different hole columns can be found. The coalescence effect of mixture bubbles increases with water temperature and non-condensable gas content increasing. Pressure oscillation intensity of pure steam condensation first increases and then decreases with water temperature increasing, and increases with steam mass flux increasing. Pressure oscillation intensity of mixture gas condensation decreases with water temperature and non-condensable gas content increasing, which is significantly weaker than that of pure steam condensation. The oscillation dominant frequency decreases with the rise of water temperature and non-condensable gas content. The correlations for oscillation intensity and dominant frequency respectively are developed in pure steam and mixture gas condensation at low mass flux.

Critical heat flux behavior in pool boiling of $water-TiO_2$ nanofluids (물-$TiO_2$ 나노유체 풀비등에서의 임계열유속)

  • Kim, Hyung-Dae;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1470-1474
    • /
    • 2004
  • 'Nanofluids' means suspension of common fluids with particles of the order of nanometers in size. The present research is an experimental study of critical heat flux (CHF) behavior in pool boiling of $water-TiO_2$ nanofluids under atmospheric pressure. CHF for pure water and $water-TiO_2$ nanofluids were respectively measured using disk-type copper block heater with 10mm diameter, and CHF of water with surfactant was also measured to consider the effect of surfactant used to disperse nanoparticle. The results show a large increase in CHF for $water-TiO_2$ nanofluids compared to pure water. After CHF occurred, heat flux in pool boiling for $water-TiO_2$ nanofluids was maintained in considerable value, but not for pure water.

  • PDF