• 제목/요약/키워드: Pure shear strength

검색결과 102건 처리시간 0.024초

Behaviour and design of Grade 10.9 high-strength bolts under combined actions

  • Li, Dongxu;Uy, Brian;Wang, Jia;Song, Yuchen
    • Steel and Composite Structures
    • /
    • 제35권3호
    • /
    • pp.327-341
    • /
    • 2020
  • The use of high-strength steel and concrete in the construction industry has been gaining increasing attention over the past few decades. With it comes the need to utilise high-strength structural bolts to ensure the design load to be transferred safely through joint regions, where the space is limited due to the reduced structural dimensions. However, research on the behaviour of high-strength structural bolts under various loading combinations is still insufficient. Most of the current design specifications concerning high-strength structural bolts were established based on a very limited set of experimental results. Moreover, as experimental programs normally include limited design parameters for investigation, finite element analysis has become one of the effective methods to assist the understanding of the behaviour of structural components. An accurate and simple full-range stress-strain model for high-strength structural bolts under different loading combinations was therefore developed, where the effects of bolt fracture was included. The ultimate strength capacities of various structural bolts obtained from the present experimental program were compared with the existing design provisions. Furthermore, design recommendations concerning the pure shear and tension, as well as combined shear and tension resistance of Grade 10.9 high-strength structural bolts were provided.

다이 및 와이어 본딩 공정을 위한 Sn-Sb Backside Metal의 계면 구조 및 전단 강도 분석 (Enhancing Die and Wire Bonding Process Reliability: Microstructure Evolution and Shear Strength Analysis of Sn-Sb Backside Metal)

  • 최여진;백승문;이유나;안성진
    • 한국재료학회지
    • /
    • 제34권3호
    • /
    • pp.170-174
    • /
    • 2024
  • In this study, we report the microstructural evolution and shear strength of an Sn-Sb alloy, used for die attach process as a solder layer of backside metal (BSM). The Sb content in the binary system was less than 1 at%. A chip with the Sn-Sb BSM was attached to a Ag plated Cu lead frame. The microstructure evolution was investigated after die bonding at 330 ℃, die bonding and isothermal heat treatment at 330 ℃ for 5 min and wire bonding at 260 ℃, respectively. At the interface between the chip and lead frame, Ni3Sn4 and Ag3Sn intermetallic compounds (IMCs) layers and pure Sn regions were confirmed after die bonding. When the isothermal heat treatment is conducted, pure Sn regions disappear at the interface because the Sn is consumed to form Ni3Sn4 and Ag3Sn IMCs. After the wire bonding process, the interface is composed of Ni3Sn4, Ag3Sn and (Ag,Cu)3Sn IMCs. The Sn-Sb BSM had a high maximum shear strength of 78.2 MPa, which is higher than the required specification of 6.2 MPa. In addition, it showed good wetting flow.

타이타니움 의치상에 대한 다양한 금속표면처리제의 적용이 첨상레진과의 결합강도에 미치는 영향 (The Effects of Various Metal Surface Treatments on the Shear Bond Strength between Titanium Denture Base and Relined Resins)

  • 은준영;조인호;이종혁
    • 구강회복응용과학지
    • /
    • 제22권2호
    • /
    • pp.137-148
    • /
    • 2006
  • The purpose of this study was to evaluate the effect of various metal surface treatments on the shear bond strength between titanium denture base and relined resins. The surfaces of commercially pure(cp) titanium were sandblasted with $50{\mu}m$ $Al_2O_3$ for 20 seconds and each group was treated with MR $Bond^{(R)}$, Alloy $Primer^{(R)}$, and Super-Bond $C&B^{(R)}$ accordingly. The specimens were completed by application of relining resins. The specimens were stored in room temperature. And the shear bond strength of the specimens were measured with the MTS universal testing $machine^{(R)}$. The results were as follows: 1. In comparison with the relining materials, $Kooliner^{(R)}$ groups showed statistically higher shear bond strength than Tokuyama Rebase $II^{(R)}$ groups(p<0.05). 2. Comparing shear bond strength, according to surface treatment, Super-bond $C&B^{(R)}$ groups showed the highest bond strength and were significantly higher than the other three groups(p<0.05). Alloy $Primer^{(R)}$ groups showed no significant difference with the MR $Bond^{(R)}$ groups, but was significantly higher than the sandblasting-only groups(p<0.05). 3. Comparing surface treatment in each groups, for two types of relining resin, the group which applies $Kooliner^{(R)}$ and Super-bond $C&B^{(R)}$ showed the highest bond strength and showed significant difference compared to the other groups(p<0.05). When using Tokuyama Rebase $II^{(R)}$, Super-bond C&B group showed the highest bond strength, but there were no significant difference compared to the Alloy $Primer^{(R)}$ group. In this limited study, applying $Kooliner^{(R)}$ and Super-Bond $C&B^{(R)}$ after sandblasting is considered to be advantageous for relining of titanium base dentures.

Strength of prestressed concrete beams in torsion

  • Karayannis, Chris G.;Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • 제10권2호
    • /
    • pp.165-180
    • /
    • 2000
  • An analytical model with tension softening for the prediction of the capacity of prestressed concrete beams under pure torsion and under torsion combined with shear and flexure is introduced. The proposed approach employs bilinear stress-strain relationship with post cracking tension softening branch for the concrete in tension and special failure criteria for biaxial stress states. Further, for the solution of the governing equations a special numerical scheme is adopted which can be applied to elements with practically any cross-section since it utilizes a numerical mapping. The proposed method is mainly applied to plain prestressed concrete elements, but is also applicable to prestressed concrete beams with light transverse reinforcement. The aim of the present work is twofold; first, the validation of the approach by comparison between experimental results and analytical predictions and second, a parametrical study of the influence of concentric and eccentric prestressing on the torsional capacity of concrete elements and the interaction between torsion and shear for various levels of prestressing. The results of this investigation presented in the form of interaction curves, are compared to experimental results and code provisions.

3차원 유한요소해석에 의한 얕은 기초의 지지력 특성 (Bearing Capacity Characteristics of Shallow Foundation by Three Dimension FEM)

  • 박춘식;김종환
    • 한국지반공학회논문집
    • /
    • 제35권3호
    • /
    • pp.17-24
    • /
    • 2019
  • 본 연구는 지반 위 얕은 기초의 지지력에 대한 특성을 파악하기 위하여 지반 조건, 기초 크기, 기초 형상 등의 다양한 조건에 대하여 3차원 유한요소해석을 수행하여 기존의 지지력 이론과 비교 검토하였다. 유한요소해석 결과 극한지지력은 기초크기에 따라 지지력이 거듭제곱이나 로그 식으로 차츰 수렴하였고, 지반강도가 증가할수록 지지력 증가가 커지지 않는 직선적인 변화를 보였다. 기존 지지력 이론과 비교한 결과 순수모래는 지지력 비($q_{FEA}/q_{theory}$)가 Terzaghi식의 결과와 가장 유사하였다. 순수점토는 약 0.4~0.6, 일반토사는 0.3~1.3 정도로 산정되었고, 지반강도가 증가할수록 지지력 비가 감소하면서 1.0 이하로 나타났다. 기초 크기에 따른 지지력을 1.0m 기초의 지지력으로 정규화시킨 지지력 비($q_u/q_{u(1.0)}$)는 순수모래에서 ${\phi}=25^{\circ}$, $30^{\circ}$, $35^{\circ}$일 때 이론식의 35%, 15%, 5% 정도로 산정되었고, 순수점토는 크기 효과가 없었으며, 일반토사는 지반강도가 작은 경우에 순수모래의 이론식에 대해 약 10% 이하로 나타났다. 지반강도 증가에 따른 지지력 비는 내부마찰각의 영향이 큰 것으로 나타났다. 기초형상별 지지력 비에 따른 형상계수는 기초형상에 따라 다르게 나타났고, 원형기초는 1.5, 정사각형 기초는 1.3, 직사각형 기초와 연속 기초는 1.1~1.0의 형상계수를 나타내었다.

Shear bond strength of composite resin to titanium according to various surface treatments

  • Lee, Seung-Yun;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권2호
    • /
    • pp.68-74
    • /
    • 2009
  • STATEMENT OF PROBLEM. When veneering composite resin-metal restoration is prepared, the fact that bond strength between Ti and composite resin is relatively weak should be considered. PURPOSE. The purpose of this study is to evaluate the shear bond strength between the veneering composite resin and commercial pure (CP) Ti / Ti-6Al-4V alloy according to the method of surface treatment. MATERIAL AND METHODS. The disks were cast by two types of metal. Their surfaces were treated by sandblasting, metal conditioner, TiN coating and silicoating respectively. After surface treatment, the disks were veneered by composite resin (Tescera$^{TM}$, Bisco, USA) which is 5 mm in diameter and 3 mm in thickness. The specimens were stored in water at $25^{\circ}C$ for 24 hours, and then evaluated for their shear bond strength by universal testing machine (STM-$5^{(R)}$, United Calibration, USA). These values were statistically analyzed. RESULTS. 1. All methods of surface treatment were used in this study satisfied the requirements of ISO 10477 which is the standard of polymer-based crown and bridge materials. 2. The metal conditioner treated group showed the highest value in shear bond strength of CP Ti, silicoated group, TiN coated group, sandblasted group, in following order. 3. The silicoated group showed the highest value in shear bond strength of Ti-6Al-4V alloy, metal conditioner treated group, sandblasted group, TiN coated group, in following order. CONCLUSION. Within the limitations of this study, all methods of surface treatment used in this study are clinically available.

Flexural Behavior of High-Strength Concrete Beams Confined with Stirrups in Pure Bending Zone

  • Jang, Il-Young;Park, Hoon-Gyu;Kim, Yong-Gon;Kim, Sung-Soo;Kim, Jong-Hoe
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.39-45
    • /
    • 2009
  • The purpose of this study is to establish flexural behavior of high-strength concrete beams confined in the pure bending zone with stirrups. The experiment was carried out on full-scale high-strength reinforced concrete beams, of which the compressive strengths were 40 MPa and 70 MPa. The beams were confined with rectangular closed stirrups. Test results are reviewed in terms of flexural capacity and ductility. The effect of web reinforcement ratio, longitudinal reinforcement ratio and shear span to beam depth ratio on ductility are investigated. The analytic method is based on finite element method using fiber-section model, which is known to define the behavior of reinforced concrete structures well up to the ultimate state and is proven to be valid by the verification with the experimental results above. It is found that confinement of concrete compressive regions with closed stirrups does not affect the flexural strength but results in a significantly increased ductility. Moreover, the ductility tends to increase as the quantity of stirrups increases by reducing the spacing of stirrups.

Behavior of circular concrete-filled steel tubular columns under pure torsion

  • Ding, Fa-xing;Fu, Qiang;Wen, Bing;Zhou, Qi-shi;Liu, Xue-mei
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.501-511
    • /
    • 2018
  • Concrete-filled steel tubular (CFT) columns are commonly used in engineering structures and always subjected to torsion in practice. This paper is thus devoted to investigate the mechanical behavior of circular CFT columns under pure torsion.3D finite element models based on reasonable material constitutive relation were established for analyzing the load-strain ($T-{\gamma}$) curves of circular CFT columns under pure torsion. The numerical simulation indicated that local bulking of the steel tube in CFT columns was prevented and the shear strength and ductility of the core concrete were significantly improved due to the confinement effect between the steel tube and the core concrete. Based on the results, formulas to predict the torsional ultimate bearing capacity of circular CFT columns were proposed with satisfactory correspondence with experimental results. Besides, formulas of composite shear stiffness and the overall process of the $T-{\gamma}$ relation of circular CFT columns under pure torsion were proposed.

유한요소해석을 이용한 교면포장의 필요부착강도 산정 (Calculation of Required Bond Strength for Bridge Deck Overlay Using Finite Element Analysis)

  • 권혁;장흥균;정원경;김동호;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.191-196
    • /
    • 2002
  • The bonding strength of the interface between the actual bridge concrete deck and overlay was primarily affected by the shear that depended on the flexural behavior than pure tensile, but the field bonding test measured bonding strength by the pure tensile due to simplicity and field applicability. Therefore, the purpose this study was to evaluate the required direct bond strength for bridge deck overlay using Finite element analysis with the many variavles such as bridge deck types, span length, material properties, lanes, and loading types. The commercial program LUSAS was used in analysis. The analysis results were compared to the value of specification currently used in highway construction site.

  • PDF

플레이트거더의 전단내력 (Shear Strength of Plate Girder)

  • 최취경;김규석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권2호
    • /
    • pp.169-176
    • /
    • 2003
  • 플레이트거더의 전단내력을 평가하기 위해서는 탄성전단좌굴강도가 정확히 산정되어야 한다. 현행 설계식에서는 탄성전단좌굴강도를 계산하기 위한 웨브 플레이트의 경계조건을 4변 단순지지로 가정하고 있다. 그러나 웨브와 플랜지의 경계조건은 일반적으로 단순지지이상의 구속을 가지고 있으며, 플랜지의 두께가 웨브의 두께에 비해 두꺼울수록 고정에 가까워진다. 플레이트거더에서 웨브 플레이트의 경계조건은 플랜지와 웨브의 두께비, 스티프너의 보강간격 등에 따라 달라지게 된다. 본 연구에서는 실험과 유한요소법을 통해 플랜지와 웨브의 폭비, 스티프너의 보강간격, 특히 플랜지와 웨브의 두께비에 따른 웨브 플레이트의 경계조건을 평가하여 플레이트거더의 전단좌굴게수를 제안하고자 한다.