• 제목/요약/키워드: Pure pitch motion

검색결과 6건 처리시간 0.017초

VPMM 시험을 이용한 잠수함 모형의 유체력 미계수 추정 (Estimation of Hydrodynamic Derivatives of Submarine Model by Using VPMM Test)

  • 정진우;정재훈;김인규;이승건
    • 한국항해항만학회지
    • /
    • 제38권2호
    • /
    • pp.97-103
    • /
    • 2014
  • 최근 들어 전 세계적으로 항공모함과 첨단 구축함 등 대규모의 최신 함정위주의 해상전력을 강화하는 상황에서 잠수함의 중요성이 더욱 부각되고 있다. 이에 따른 잠수함의 조종성능 향상을 위한 정밀한 동유체력 미계수 값이 요구된다. 본 논문에서는 VPMM(Vertical Planar Motion Mechanism) 실험을 위하여 연직 강제 동요시험(VPMM)장비를 이용하였고, 이를 통해 동유체력을 측정하였다. 심도, 주기, 속도 등을 변화시키며 다양한 환경에서 실험을 실시하였다. 잠수함 모형을 속도 U로 예인하면서 동시에 순수 상하동요(Pure heave), 순수 종동요(Pure pitch) 운동을 각각 주었고, 이때 부가되는 힘과 모멘트를 잠수함 모형의 선수 선미 부분에 장착된 로드셀을 이용하여 각각 획득하였다. 그 결과, 푸리에 해석을 통한 잠수함 모형의 선형 유체력 미계수들을 추정할 수 있었다.

VPMM 시험을 통한 무인 수중 글라이더 모형의 동유체력 계수 추정에 관한 연구 (Experimental Study on Hydrodynamic Coefficients of Autonomous Underwater Glider Using Vertical Planar Motion Mechanism Test)

  • 정진우;정재훈;김인규;이승건
    • 한국해양공학회지
    • /
    • 제28권2호
    • /
    • pp.119-125
    • /
    • 2014
  • A vertical planar motion mechanism(VPMM) test was used to increase the prediction accuracy for the maneuverability of an underwater glider model. To improve the accuracy of the linear hydrodynamic coefficients, the analysis techniques of a pure heave test and pure pitch test were developed and confirmed. In this study, the added mass and damping coefficient were measured using a VPMM test. The VPMM equipment provided pure heaving and pitching motions to the underwater glider model and acquired the forces and moments using load cells. As a result, the hydrodynamic coefficients of the underwater glider could be acquired after a Fourier analysis of the forces and moments. Finally, a motion control simulation was performed for the glider control system, and the results are presented.

A numerical study on hydrodynamic maneuvering derivatives for heave-pitch coupling motion of a ray-type underwater glider

  • Lee, Sungook;Choi, Hyeung-Sik;Kim, Joon-Young;Paik, Kwang-Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.892-901
    • /
    • 2020
  • We used a numerical method to estimate the hydrodynamic maneuvering derivatives for the heave-pitch coupling motion of an underwater glider. It is very important to assess the hydrodynamic maneuvering characteristics of a specific hull form of an underwater glider in the initial design stages. Although model tests are the best way to obtain the derivatives, numerical methods such as the Reynolds-averaged Navier-Stokes (RANS) method are used to save time and cost. The RANS method is widely used to estimate the maneuvering performance of surface-piercing marine vehicles, such as tankers and container ships. However, it is rarely applied to evaluate the maneuvering performance of underwater vehicles such as gliders. This paper presents numerical studies for typical experiments such as static drift and Planar Motion Mechanism (PMM) to estimate the hydrodynamic maneuvering derivatives for a Ray-type Underwater Glider (RUG). A validation study was first performed on a manta-type Unmanned Undersea Vehicle (UUV), and the Computational Fluid Dynamics (CFD) results were compared with a model test that was conducted at the Circular Water Channel (CWC) in Korea Maritime and Ocean University. Two different RANS solvers were used (Star-CCM+ and OpenFOAM), and the results were compared. The RUG's derivatives with both static drift and dynamic PMM (pure heave and pure pitch) are presented.

날개짓 비행체의 양력 변위 (Lift Force Variation of Flapping Wing)

  • 홍영선
    • 한국군사과학기술학회지
    • /
    • 제10권1호
    • /
    • pp.33-43
    • /
    • 2007
  • Using the more common conventional chordwise aerodynamic approach, flapping a flat plate wing with zero degree chordwise pitch angle of attack and no relative wind should not produce lift. However, in hover, with no forward relative velocity and zero degree chordwise pitch angle of attack, flapping flat plate wings does in fact produce lift. In the experiments peformed for this paper, the flapping motion is considered pure(downstroke and upstroke) with no flapping stroke plane inclination angle. No changes in chordwise pitch angle are made. The total force is measured using a force transducer and the net aerodynamic force is determined from this measured total force by subtracting the experimentally determined inertial contribution. These experiments were repeated at various flapping frequencies and for various wing planform sizes for flat plate wings. The trends in the aerodynamic lift variation found using a force transducer have nearly identical shape for various flapping frequencies and wing planform sizes.

VPMM 시험을 이용한 수중 잠수함 모형의 동유체력 계수 추정에 관한 연구 (Experimental Investigation on Hydrodynamic Coefficients of Submarine Model by VPMM Test)

  • 정진우;정재훈;김인규;이승건
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2013년도 추계학술대회
    • /
    • pp.117-118
    • /
    • 2013
  • 최근 들어 전 세계적으로 항공모함과 첨단 구축함 등 대규모의 최신 함정위주의 해상전력을 강화하는 상황에서 잠수함의 중요성이 더욱 부각되고 있다. 이에 따른 잠수함의 운동조종을 위한 정밀한 동유체력 미계수 값이 운동방정식에서 요구된다. 수직면 평면운동시험(VPMM)장비를 이용한 동유체력을 측정하였다. 심도를 변화하면서 잠수함 모형에 상하요, 종요 운동을 각각 주었고, 이를 로드셀을 이용하여 힘과 모멘트를 각각 획득 하였다. 그 결과, 푸리에 해석을 통한 수중잠수함 모형의 동유체력 계수를 얻었다.

  • PDF

Analytical study on hydrodynamic motions and structural behaviors of hybrid floating structure

  • Jeong, Youn-Ju;Lee, Du-Ho;Park, Min-Su;You, Young-Jun
    • Ocean Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.35-53
    • /
    • 2013
  • In this study, a hybrid floating structure with cylinder was introduced to reduce the hydrodynamic motions of the pontoon type. The hybrid floating structure is composed of cylinders and semi-opened side sections to penetrate the wave impact energy. In order to exactly investigate the hydrodynamic motions and structural behavior of the hybrid floating structure under the wave loadings, integrated analysis of hydrodynamic and structural behavior were carried out on the hybrid floating structure. Firstly, the hydrodynamic analyses were performed on the hybrid and pontoon models. Then, the wave-induced hydrodynamic pressures resulting from hydrodynamic analysis were directly mapped to the structural analysis model. And, finally, the structural analyses were carried out on the hybrid and pontoon models. As a result of this study, it was learned that the hybrid model of this study was showed to have more favorable hydrodynamic motions than the pontoon model. The surge motion was indicated even smaller motion at all over wave periods from 4.0 to 10.0 sec, and the heave and pitch motions indicated smaller motions beyond its wave period of 6.5 sec. However, the hybrid model was shown more unfavorable structural behavior than the pontoon model. High concentrated stress occurred at the bottom slab of the bow and stern part where the cylinder wall was connected to the bottom slab. Also, the hybrid model behaved with the elastic body motion due to weak stiffness of floating body and caused a large stress variation at the pure slab section between the cylinder walls. Hence, in order to overcome these problems, some alternatives which could be easily obtained from the simple modification of structural details were proposed.