• Title/Summary/Keyword: Pure Nickel

Search Result 93, Processing Time 0.027 seconds

Electrode Performance of Pt-Cr-Ni Alloy Catalysts for Oxygen Electrode in Polymer Electrolyte Fuel Cell (고분자전해질형 연료전지에서 산소극을 위한 백금-크롬-니켈 합금촉매의 전극특성)

  • Sim, Jung-Pyo;Lee, Hong-Gi
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.831-837
    • /
    • 2000
  • To improve the catalytic activity of platinum on polymer electrolyte fuel cell(PEFC), platinum was alloyed with cobalt and nickel at various temperature. By XRD, it was observed the crystal structure of alloy catalysts were the ordered face centered cubic(f.c.c) due to the superlattice line at $33^{\circ}$. As heat-treatment temperature was increased, the particle size of alloys also were increased and the crystalline lattice parameters were decreased. According to the results from mass activity, specific activity and Tafel slope measured by cell performance test and cyclic voltammogram, the catalyst activities of alloys are higher than that pure platinum.

  • PDF

Effect of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films

  • Kumar, Davinder;Singh, Avtar;Kaur, Navneet;Katoch, Apoorva;Kaur, Raminder
    • Korean Journal of Materials Research
    • /
    • v.32 no.5
    • /
    • pp.249-257
    • /
    • 2022
  • Transparent thin films of pure and nickel-doped ZrO2 are grown successfully by sol-gel dip-coating technique. The structural and optical properties according to the different annealing temperatures (300 ℃, 400 ℃ and 500 ℃) are investigated. Analysis of crystallographic properties through X-ray diffraction pattern reveals an increase in crystallite size due to increase in crystallinity with temperature. All fabricated thin films are highly-oriented along (101) planes, which enhances the increase in nickel doping. Scanning electron microscopy and energy dispersive spectroscopy are employed to confirm the homogeneity in surface morphology as well as the doping configuration of films. The extinction coefficient is found to be on the order of 10-2, showing the surface smoothness of deposited thin films. UV-visible spectroscopy reveals a decrease in the optical band gap with the increase in annealing temperature due to the increase in crystallite size. The variation in Urbach energy and defect density with doping and the change in annealing temperature are also studied.

Fabrication and Properties of Alloy Foam Materials using Metal Powders (금속 분말을 이용한 합금폼 제조 및 특성)

  • Choi, James;Kim, Ku-Hwan
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.489-493
    • /
    • 2010
  • Nickel-based and iron-based alloys have been developed and commercialized for a wide range of high performance applications at severely corrosive and high temperature environment. This alloy foam has an outstanding performance which is predestinated for diesel particulate filters, heat exchangers, and catalyst support, noise absorbers, battery, fuel cell, and flame distributers in burners in chemical and automotive industry. Production of alloy foam starts from high-tech coating technology and heat treatment of transient liquid-phase sintering in the high temperature. These technology allow for preparation of a wide variety of foam compositions such as Ni, Cr, Al, Fe on various pore size of pure nickel foam or iron foam in order for tailoring material properties to a specific application.

Characterization of TLP Bonded of Magnesium AZ31 Alloy using a Nickel Interlayer (Ni 삽입재를 사용한 마그네슘 AZ31 합금의 TLP접합 특성평가)

  • Jin, Yeung Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.113-119
    • /
    • 2013
  • The transient liquid phase (TLP) bonding was used to fabricate autogenous joints in a magnesium alloy AZ31 with the aid of a pure Ni interlayer. A $13{\mu}m$ thick pure Ni foil was used in order to form a Mg-Ni eutectic liquid at the joint interface. The interface of reaction and composition profiles were investigated as a function of bonding time using a pressure of 0.16 MPa and a bonding temperature of $515^{\circ}C$. The quality of the joints produced was examined by metallurgical characterization and the joint microstructure developed across the diffusion bonds was related to changes in mechanical properties as a function of the bonding time.

Recycling Technology of Waste Product in Electro Galvanizing Line of Steel Company

  • Lee, Jae-Young;Lee, H. H.;Kim, D. Y.;J. G. Sohn
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.281-285
    • /
    • 2001
  • This technology Provides an economical Production of high value added goods applicable to electro chemicals by recycling of waste products in EGL(Electro Galvanizing Line). The waste products produced in EGL contain potassium chloride (KCI), nickel and zinc. Highly pure KCI and Zinc Chloride which are raw material of electro plating, can be produced by the development of the recycling process. The scope of this study ranges from laboratory experiments to pilot test in plant. We have developed the whole process of recycling technology such as purification method of waste products, fabrication methods of electro chemicals, basic design of plant, pilot scale production and evaluation of pilot goods, Developed electro chemicals were pure enough to satisfy the specification of steel company.

  • PDF

Creep Life Prediction of Aircraft Gas Turbine material by ISM (ISM에 의한 항공기용 가스터빈 재료의 크리프 수명예측)

  • 공유식
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.43-48
    • /
    • 2001
  • In this paper, the real-time prediction of high temperature creep strength and creep for nickel-based superalloy Udimet 720 (high-temperature and high-pressure gas turbine engine materials) was performed on round-bar type specimens under pure load at the temperatures of 538, 649 and 704$^{\circ}C$. The predictive equation of ISM creep has better reliability than that of LMP and LMP-ISM, and its reliability is getting better for long time creep prediction ($10^3~10^5$h).

  • PDF

Microstructure and Properties of Ni-SiC Composite Coating Layers Formed using Nano-sized SiC Particles (SiC 나노입자를 이용하여 형성한 Ni-SiC 복합도금막의 미세구조 및 특성)

  • Lee, Hong-Kee;Son, Seong-Ho;Lee, Ho-Young;Jeon, Jun-Mi
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.63-69
    • /
    • 2007
  • Ni-SiC composite coating layers were formed using two kinds of SiC nano-particles by DC electrodeposition in a nickel sulfamate bath containing SiC particles. The effect of stirring rate and SiC particle type on the microstructure and properties of Ni-SiC composite coating layers were investigated. Results revealed that the trend of deposition rate is closely related to the codeposition of SiC and the deposition rate. or nickel, and the codeposition behavior of SiC can be explained by using hydrodynamic effect due to stirring. The average roughness and friction coefficient are closely related to the codeposition of SiC and SiC particle size. It was found that the Victors microhardness of the composite coating layers increased with increasing codeposition of SiC. The composite coating layers containing smaller SiC particle showed higher hardness. This can be explained by using the strengthening mechanism resulting from dispersion hardening. Anti-wear property of the composite coating layers formed using 130 nm-sized SiC nano-particles has been improved by 2,300% compared with pure electroplated-nickel layer.

Novel solvothermal approach to hydrophilic nanoparticles of late transition elements and its evaluation by nanoparticle tracking analysis

  • Dutilleul, Marion Collart;Seisenbaeva, Gulaim A.;Kessler, Vadim G.
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.77-88
    • /
    • 2014
  • Solvothermal treatment of late transition metal acetylacetonates in a novel medium composed either of pure acetophenone or acetophenone mixtures with amino alcohols offers a general approach to uniform hydrophilic metal nanoparticles with high crystallinity and low degree of aggregation. Both pure metal and mixed-metal particles can be accesses by this approach. The produced materials have been characterized by SEM-EDS, TEM, FTIR in the solid state and by Nanoparticle Tracking Analysis in solutions. The chemical mechanisms of the reactions producing nanoparticles has been followed by NMR. Carrying out the process in pure acetophenone produces palladium metal, copper metal with minor impurity of $Cu_2O$, and NiO. The synthesis starting from the mixtures of Pd and Ni acetylacetonates with up to 20 mol% of Pd, renders in minor yield the palladium-based metal alloy along with nickel oxide as the major phase. Even the synthesis starting from a mixed solution of $Cu(acac)_2$ and $Ni(acac)_2$ produces oxides as major products. The situation is improved when aminoalcohols such as 2-aminoethanol or 2-dimethylamino propanol are added to the synthesis medium. The particles in this case contain metallic elements and pairs of individual metals (not metal alloys) when produced from mixed precursor solutions in this case.

Effects of Different Shielding Gases in Laser Welding of Secondary Ni battery with Multi-thin Plates (이차전지용 니켈 다층 박판의 레이저 용접 보호가스의 영향)

  • You, Young-Tae;Lee, Ka-Ram;Kim, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.329-337
    • /
    • 2016
  • The demand for the eco-friendly vehicles is skyrocketing because of the increasing $CO_2$ emissions and global warming. In the industrial field, the battery process, a core part of an eco-friendly vehicle, is drawing increased attention; its weight lightening as well as high energy density are becoming increasingly important. In this study, pure Ni plates that were used as the battery pole plate were welded using the laser. The lab joint welding was conducted on ten pure Ni plates at a laser power of 1900 W and a feed speed of 2.8-3.4 m/min. As observed in the experiment, a faster feed speed reduced the bead width, but the laser did not penetrate all ten specimen plates. In addition, pores were trapped when protective gas was used, but they were not trapped when the welding was conducted in atmospheric condition.

Corrosion Behavior of a High-Manganese Austenitic Alloy in Pure Zinc Bath

  • Yi, Zhang;Liu, Junyou;Wu, Chunjing
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.98-103
    • /
    • 2010
  • In order to further reduce the cost without reducing the corrosion resistance, a high-manganese austenitic alloy for sink roll or stabilizer roll in continuous hot-dip coating lines was developed. A systematic study of corrosion behavior of the high-manganese austenitic alloy in pure zinc bath at $490^{\circ}C$ was carried out. The results shows that, the high-manganese austenitic alloy shows better corrosion resistance than 316L steel. The corrosion rate of the high-manganese austenitic alloy in pure zinc bath is calculated to be approximately $6.42{\times}10^{-4}g{\cdot}cm^{-2}{\cdot}h^{-1}$, while the 316L is $1.54{\times}10^{-3}g{\cdot}cm^{-2}{\cdot}h^{-1}$. The high-manganese austenitic alloy forms a three-phase intermetallic compound layer morphology containing ${\Gamma$}, ${\delta}$ and ${\zeta}$ phases, while the 316L is almost ${\zeta}$ phase. The ${\Gamma}$ and ${\delta}$ phases of the high-manganese austenitic alloy contain about 8.5 wt% Cr, the existence of Cr improve the stabilization of phases, which slow down the reaction of Fe and Zn, improve the corrosion resistance of the high-manganese austenitic alloy. So substitute the nickel with the manganese to manufacture the high-manganese austenitic alloy of low cost is feasible.