• Title/Summary/Keyword: Pure Metals

Search Result 190, Processing Time 0.035 seconds

Cubic zirconia single crystal growth using shell by skull melting method (스컬용융법에 의한 패각을 이용한 큐빅지르코니아 단결정 성장)

  • Jung, Jin-Hwa;Yon, Seog-Joo;Seok, Jeong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.124-128
    • /
    • 2013
  • In this research, cubic zirconia is synthesized with a refined CaO from shells as a stabilizer through Skull melting method. The proper process time and concentration are defined by Hydration reaction to produce the refined CaO after two different treatments using 0.1 mol% of HCl respectively with Cockle shell. The highest purity of CaO is reached when the shell is immersed in 1 mol% HCl. In Hydration reaction step, the pure $Ca(OH)_2$ is produced at $45^{\circ}C$ for 24 hours. The highest purity of CaO is measured when the $Ca(OH)_2$ is treated by heat at $1200^{\circ}C$ for 5 hours. The single crystals are grown through Skull melting method by adding the different contents of the refined CaO from 10 mol% to 30 mol% into $ZrO_2$. The frequency of High-frequency oscillator used for Skull melting method is 3.4 MHz. The descending speed of the single crystal is 3 mm/hour. The grown length of the single crystal is 4 cm. As a result of this study, 15 mol% of CaO has the best crystallinity.

Effect of magnetic separation in removal of Cr and Ni from municipal solid waste incineration (MSWI) bottom ash (생활폐기물(生活廢棄物) 소각(燒却) 바닥재의 자력선별(磁力選別)에 따른 크롬과 니켈의 거동(擧動))

  • Ahn, Ji-Whan;Um, Nam-Il;Cho, Kye-Hong;Oh, Myung-Hwan;You, Kwang-Suk;Han, Gi-Chun;Cho, Hee-Chan;Han, Choon;Kim, Byong-Gon
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.3-9
    • /
    • 2007
  • Although the ferrous material was separated by the magnetic separation before the incineration process, the municipal solid waste incineration bottom ash generated during incinerator in metropolitan area consists of many iron products which account for about $3{\sim}11%$ as well as ceramics and glasses. The formation of $NiFe_2O_4$ and $FeCr_2O_4$ with a $Fe_3O_4-Fe_2O_3$ (similar to pure Fe) on the surface of iron product was found during air-annealing in the incinerator at $1000^{\circ}C$, because Ni and Cr has a chemical attraction about iron is using to coat with Ni and Cr metals for poish or to prevent corrosion. Therefore, Fe-Ni Cr oxide can be formed on durface of the iron product and it can be separated from bottom ash through the magnetic separation. So, in this study, the separation ratio of heavy metals as magnetic separation and mineralogical formation of Fe-ion(heavy metal) in ferrous metals corroded were investigated. As the result, the separation ratio of Ni and Cr based on particle sizes accounted for about $45{\sim}50%$, and Cu and Pb accounted for below 20%. Also, the leaching concentration of Ni and Cr in bottom ash separated by magnetic separation was lower than that in fresh bottom ash.

Characteristics and Production of Tantalum Powder on the amount of Diluent By Na Reduction Method (Na환원법에 의한 희석제량에 따른 탄탈 분말 제조와 특성)

  • Yoon, Jae-Sik;Park, Hyeong-Ho;Bae, In-Sung;Kim, Byung-Il;Jung, Sung-Man
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.706-711
    • /
    • 2002
  • High-pure tantalum powder was fabricated through Na reduction process and has been produced by using $K_2$TaF$_{7}$, and KCI, KF for raw material and diluent, respectively. A raw material and diluent were charged at the hestalloy bomb by the weight rate of 1:2, 1:1, 1:0.5 and 1:0.25 each other, investigated properties of morphology, chemical composition and yield and particle size after reduced. Ta metal has been achieved by reduction of $K_2$$TaF_{7}$ 500g with 1% sodium in excess of stoichiometric amount in the charge at a reduction temperature of $850^{\circ}C$ for 3hours. According to amount of the diluent, a formation of the powder doesn't have an effect. The diluent prevented the temperature rising caused from the heat of reaction and it maintained the speed of reducing reaction. But in the mixture ratio of raw material and diluent in the 1 : 2 and 1 : 0.25, an oxide and partially not reacted K were detected. As the amount of diluent increased, the size of tantalum powder decreased. According as raw material and the mixture ratio of diluent change from 1:0.25 to 1:2, the size is decreased from 5$\mu\textrm{m}$ to 1$\mu\textrm{m}$, and a particle size distribution which is below 325 mesh in fined powder increases from 71% to 83%. In the case of average size of Tantalum powder which is the mixture ratio (1:0.5), we would get the Ta powder with grain size about 3$\mu\textrm{m}$, which come close to the average size (2~4$\mu\textrm{m}$) of tantalum powder which is used commonly in the present is Ta powder about 3$\mu\textrm{m}$.

Effect of Targets on Synthesis of Aluminum Nitride Thin Films Deposited by Pulsed Laser Deposition (펄스레이저법으로 증착 제조된 AlN박막의 타겟 효과)

  • Chung, J.K.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.44-48
    • /
    • 2020
  • Aluminum nitride (AlN), as a substrate material in electronic packaging, has attracted considerable attention over the last few decades because of its excellent properties, which include high thermal conductivity, a coefficient of thermal expansion that matches well with that of silicon, and a moderately low dielectric constant. AlN films with c-axis orientation and thermal conductivity characteristics were deposited by using Pulsed Laser Deposition (PLD). The epitaxial AlN films were grown on sapphire (c-Al2O3) single crystals by PLD with AlN target and Y2O3 doped AlN target. A comparison of different targets associated with AlN films deposited by PLD was presented with particular emphasis on thermal conductivity properties. The quality of AlN films was found to strongly depend on the growth temperature that was exerted during deposition. AlN thin films deposited using Y2O3-AlN targets doped with sintering additives showed relatively higher thermal conductivity than while using pure AlN targets. AlN thin films deposited at 600℃ were confirmed to have highly c-axis orientation and thermal conductivity of 39.413 W/mK.

Electrodelss Plasma Torch Powered by Microwave and Its Applications (무전극 마이크로웨이브 플라즈마 토치와 응용)

  • Hong, Yong-Cheol;Jun, Hyung-Won;Lho, Tai-Hyeop;Lee, Bong-Ju;Uhm, Han-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.889-892
    • /
    • 2009
  • A microwave plasma torch at the atmospheric pressure by making use of magnetrons operated at the 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used to various areas, including industrial, environmental and military applications. Although the microwave plasma torch has many applications, we in the present work focused on the microwave plasma torch operated in pure steam and several applications, which may be used in future and right now. For example, a high-temperature steam microwave plasma torch may have a potential application of the hydrocarbon fuel reforming at one atmospheric pressure. Moreover, the radicals including hydrogen, oxygen and hydroxide molecules are abundantly available in the steam torch, dramatically enhancing the reaction speed. Also, the microwave plasma torch can be used as a high-temperature, large-volume plasma burner by injecting hydrocarbon fuels in gas, liquid, and solid into the plasma flame. Lastly, we briefly report an underway research, which is remediation of soils contaminated with oils, volatile organic compounds, heavy metals, etc.

  • PDF

Nano Electrocatalysis for Fuel Cells

  • Sung, Yung-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.133-133
    • /
    • 2013
  • For both oxygen reduction (ORR) and hydrogen oxidation reactions (HOR) of proton electrolyte membrane fuel cells (PEMFCs), alloying Pt with another transition metal usually results in a higher activity relative to pure Pt, mainly due to electronic modification of Pt and bifunctional behaviour of alloy surface for ORR and HOR, respectively. However, activity and stability are closely related to the preparation of alloy nanoparticles. Preparation conditions of alloy nanoparticles have strong influence on surface composition, oxidation state, nanoparticle size, shape, and contamination, which result from a large difference in redox priority of metal precursors, intrinsic properties of metals, increasedreactivity of nanocrystallites, and interactions with constituents for the synthesis such as solvent, stabilizer, and reducing agent, etc. Carbon-supported Pt-Ni alloy nanoparticles were prepared by the borohydride reduction method in anhydrous solvent. Pt-Ru alloy nanoparticles supported on carbon black were also prepared by the similar synthetic method to that of Pt-Ni. Since electrocatalytic reactions are strongly dependent on the surface structure of metal catalysts, the atom-leveled design of the surface structure plays a significant role in a high catalytic activity and the utilization of electrocatalysts. Therefore, surface-modified electrocatalysts have attracted much attention due to their unique structure and new electronic and electrocatalytic properties. The carbon-supported Au and Pd nanoparticles were adapted as the substrate and the successive reduction process was used for depositing Pt and PtM (M=Ru, Pd, and Rh) bimetallic elements on the surface of Au and Pd nanoparticles. Distinct features of the overlayers for electrocatalytic activities including methanol oxidation, formic acid oxidation, and oxygen reduction were investigated.

  • PDF

Effect of Hot Isostatic Pressing on the Microstructure and Properties of Kinetic Sprayed Nb Coating Material (Kinetic Spray 공정으로 제조된 Nb 코팅 소재의 미세조직 및 물성에 미치는 열간 등압 성형(HIP)의 영향)

  • Lee, Ji-Hye;Yang, Sangsun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Niobium is one of the most important and rarest metals, and is used in the electronic and energy industries. However, it's extremely high melting point and oxygen affinity limits the manufacture of Nb coating materials. Here, a Nb coating material is manufactured using a kinetic spray process followed by hot isotactic pressing to improve its properties. OM (optical microscope), XRD (X-ray diffraction), SEM (scanning electron microscopy), and Vickers hardness and EPMA (electron probe micro analyzer) tests are employed to investigate the macroscopic properties of the manufactured Nb materials. The powder used to manufacture the material has angular-shaped particles with an average particle size of $23.8{\mu}m$. The porosity and hardness of the manufactured Nb material are 0.18% and 221 Hv, respectively. Additional HIP is applied to the manufactured Nb material for 4 h under an Ar atmosphere after which the porosity decreases to 0.08% and the hardness increases to 253 Hv. Phase analysis after the HIP shows the presence of only pure Nb. The study also discusses the possibility of using the manufactured Nb material as a sputtering target.

Microstructure of Electron Beam Welded Cu / STS 304 Dissimilar Materials (전자빔 용접된 Cu / STS 304강의 미세조직에 관한 연구)

  • Park, Kyoung-Tae;Kim, In-Ho;Baek, Jun-Ho;Chun, Byung-Sun
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.47-53
    • /
    • 2010
  • According to the research report for the recent a few years, the dissimilar welding of Cu and STS 304 alloy have been presented that a weldability is very poor. This article present a study on Lap joint by Electron beam welding dissimilar materials. The weld metals was constituted between pure copper and STS 304 steel. The experiment was performed with 125mA welding current, 520mA focusing current. The Vacuum condition of chamber is 5${\times}$10-5torr and welding speed is 300mm/min. Showing the bead shape of weld metal, the thickness of the stainless 304 using as the protect materials is 3mm and the thickness of a copper is 15mm. The analysis about the microstructure were carried out in which it was observed with SEM. The results showed that complex heterogeneous fusion zone microstructure characterized both by rapid cooling and mixing of the molten metal, however the liquation crack was formated in the fusion line.

Selective Removal of Odorants in Natural Gas by Adsorption on Metal-containing Beta Zeolite Adsorbents (금속함유 베타 제올라이트 흡착제 상에서 LNG가스 내에 부취된 황화합물의 선택적 흡착제거)

  • Oh, Sang-Seung;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.459-466
    • /
    • 2007
  • In this study, H-type beta zeolites (BEA) having various metals were used as the adsorbent for the removal of sulfur containing odorants. The different adsorbents containing single or bimetals were utilized to investigate the performance in the individual adsorption of TBM and THT odorants or in the competitive adsorption between them by using a continuous adsorptive bed system. The result shows that the pure H-type BEA zeolite exhibited the highest adsorption capacity for TBM compound, but the higher amount of THT was removed and adsorbed on a HBEA adsorbent having Fe, Pd metal and ZnO oxide. In the case of bimetal containing adsorbents, Cu-Zn/HBEA and Fe-Mo/HBEA showed a higher adsorption capacity for TBM.

Development of Steam Plasma-Enhanced Coal Gasifier and Future Plan for Poly-Generation

  • Hong, Yong-Cheol;Lho, Taihyeop;Lee, Bong-Ju;Uhm, Han-Sup
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.139-144
    • /
    • 2009
  • A microwave plasma torch at the atmospheric pressure by making use of magnetrons operated at the 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used to various areas, including industrial, environmental and military applications. Although the microwave plasma torch has many applications, we in the present work focused on the microwave plasma torch operated in pure steam and several applications, which may be used in future and right now. For example, a high-temperature steam microwave plasma torch may have a potential application of the hydrocarbon fuel reforming at one atmospheric pressure. Moreover, the radicals including hydrogen, oxygen and hydroxide molecules are abundantly available in the steam torch, dramatically enhancing the reaction speed. Also, the microwave plasma torch can be used as a high-temperature, large-volume plasma burner by injecting hydrocarbon fuels in gas, liquid, and solid into the plasma flame. Finally, we briefly report treatment of soils contaminated with oils, volatile organic compounds, heavy metals, etc., which is an underway research in our group.