• Title/Summary/Keyword: Pupil-tracking algorithm

Search Result 15, Processing Time 0.018 seconds

Development of Low-Cost Vision-based Eye Tracking Algorithm for Information Augmented Interactive System

  • Park, Seo-Jeon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • Deep Learning has become the most important technology in the field of artificial intelligence machine learning, with its high performance overwhelming existing methods in various applications. In this paper, an interactive window service based on object recognition technology is proposed. The main goal is to implement an object recognition technology using this deep learning technology to remove the existing eye tracking technology, which requires users to wear eye tracking devices themselves, and to implement an eye tracking technology that uses only usual cameras to track users' eye. We design an interactive system based on efficient eye detection and pupil tracking method that can verify the user's eye movement. To estimate the view-direction of user's eye, we initialize to make the reference (origin) coordinate. Then the view direction is estimated from the extracted eye pupils from the origin coordinate. Also, we propose a blink detection technique based on the eye apply ratio (EAR). With the extracted view direction and eye action, we provide some augmented information of interest without the existing complex and expensive eye-tracking systems with various service topics and situations. For verification, the user guiding service is implemented as a proto-type model with the school map to inform the location information of the desired location or building.

Wearable Robot System Enabling Gaze Tracking and 3D Position Acquisition for Assisting a Disabled Person with Disabled Limbs (시선위치 추적기법 및 3차원 위치정보 획득이 가능한 사지장애인 보조용 웨어러블 로봇 시스템)

  • Seo, Hyoung Kyu;Kim, Jun Cheol;Jung, Jin Hyung;Kim, Dong Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1219-1227
    • /
    • 2013
  • A new type of wearable robot is developed for a disabled person with disabled limbs, that is, a person who cannot intentionally move his/her legs and arms. This robot can enable the disabled person to grip an object using eye movements. A gaze tracking algorithm is employed to detect pupil movements by which the person observes the object to be gripped. By using this gaze tracking 2D information, the object is identified and the distance to the object is measured using a Kinect device installed on the robot shoulder. By using several coordinate transformations and a matching scheme, the final 3D information about the object from the base frame can be clearly identified, and the final position data is transmitted to the DSP-controlled robot controller, which enables the target object to be gripped successfully.

Gaze Tracking System Using Feature Points of Pupil and Glints Center (동공과 글린트의 특징점 관계를 이용한 시선 추적 시스템)

  • Park Jin-Woo;Kwon Yong-Moo;Sohn Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.11 no.1 s.30
    • /
    • pp.80-90
    • /
    • 2006
  • A simple 2D gaze tracking method using single camera and Purkinje image is proposed. This method employs single camera with infrared filter to capture one eye and two infrared light sources to make reflection points for estimating corresponding gaze point on the screen from user's eyes. Single camera, infrared light sources and user's head can be slightly moved. Thus, it renders simple and flexible system without using any inconvenient fixed equipments or assuming fixed head. The system also includes a simple and accurate personal calibration procedure. Before using the system, each user only has to stare at two target points for a few seconds so that the system can initiate user's individual factors of estimating algorithm. The proposed system has been developed to work in real-time providing over 10 frames per second with XGA $(1024{\times}768)$ resolution. The test results of nine objects of three subjects show that the system is achieving an average estimation error less than I degree.

3D First Person Shooting Game by Using Eye Gaze Tracking (눈동자 시선 추적에 의한 3차원 1인칭 슈팅 게임)

  • Lee, Eui-Chul;Park, Kang-Ryoung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.465-472
    • /
    • 2005
  • In this paper, we propose the method of manipulating the gaze direction of 3D FPS game's character by using eye gaze detection from the successive images captured by USB camera, which is attached beneath HMB. The proposed method is composed of 3 parts. At first, we detect user's pupil center by real-time image processing algorithm from the successive input images. In the second part of calibration, when the user gaze on the monitor plane, the geometric relationship between the gazing position of monitor and the detected position of pupil center is determined. In the last part, the final gaze position on the HMD monitor is tracked and the 3D view in game is controlled by the gaze position based on the calibration information. Experimental results show that our method can be used for the handicapped game player who cannot use his(or her) hand. Also, it can Increase the interest and the immersion by synchronizing the gaze direction of game player and the view direction of game character.

3D View Controlling by Using Eye Gaze Tracking in First Person Shooting Game (1 인칭 슈팅 게임에서 눈동자 시선 추적에 의한 3차원 화면 조정)

  • Lee, Eui-Chul;Cho, Yong-Joo;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1293-1305
    • /
    • 2005
  • In this paper, we propose the method of manipulating the gaze direction of 3D FPS game's character by using eye gaze detection from the successive images captured by USB camera, which is attached beneath HMD. The proposed method is composed of 3 parts. In the first fart, we detect user's pupil center by real-time image processing algorithm from the successive input images. In the second part of calibration, the geometric relationship is determined between the monitor gazing position and the detected eye position gazing at the monitor position. In the last fart, the final gaze position on the HMB monitor is tracked and the 3D view in game is control]ed by the gaze position based on the calibration information. Experimental results show that our method can be used for the handicapped game player who cannot use his (or her) hand. Also, it can increase the interest and immersion by synchronizing the gaze direction of game player and that of game character.

  • PDF