• Title/Summary/Keyword: Pupal duration

Search Result 27, Processing Time 0.032 seconds

Life Cycle of Tipula latemarginata Alexander (Diptera: Tipulidae) in Korea (한국산 애아이노각다귀, Tipula latemarginata Alexander, (파리목, 각다귀과)의 생활사)

  • Kim Dong Sang;Lee Jong Eun
    • Korean journal of applied entomology
    • /
    • v.44 no.2
    • /
    • pp.109-114
    • /
    • 2005
  • This study was conducted to investigate the life cycle of Tipula latemarginata Alexander in Korea. The field surveys for the life cycle of the species were carried out at the two sites of Neaseong Stream area in Bongwha County from January 2001 to December 2002. Also many individuals of the species were reared in laboratory to investigate the life cycle. T latemarginata appeared to have three generations a year under the rearing conditions at room temperature. All the processes of life cycle of the species, when reared at room temperature from September 2001 to March 2002, were as follows: Eggs usually hatched between 4 and 10 days after oviposition. First instar larvae grew rapidly and molted to the second instar in 7-9 days. Second instar larvae spent 5-7 days for next molting and third instar period lasted approximately 8-12 days. Fourth instar larvae spent 6 weeks to 5 months for pupation. Especially the duration of fourth instar larval existence was greatly lengthened and served as the overwintering stage. The duration of pupal stage was 6-10 days. In the field, T. latemarginata also appeared to have three generations a year at the favorable habitats.

The Temperature-Dependent Development of the Parasitoid Fly, Exorista Japonica (Townsend) (Diptera: Tachinidae) (항온조건에서 긴등기생파리 [Exorista japonica (Townsend)] (Diptera: Tachinidae) 온도별 발육)

  • Park, Chang-Gyu;Seo, Bo Yoon;Choi, Byeong-Ryoel
    • Korean journal of applied entomology
    • /
    • v.55 no.4
    • /
    • pp.445-452
    • /
    • 2016
  • Exorista japonica is one of the major natural enemies of noctuid larvae, Mythimna separata and Spodoptera litura. The examined parasitoid was obtained from host species M. separata, collected at Gimje city and identified by DNA sequences (partial cytochrome oxidase I, 16S, 18S, and 28S). For purposed of this study, laboratory reared S. litura served as the host species for the development of the E. japonica. The developmental period of E. japonica immature stages were investigated at seven constant temperatures (16, 19, 22, 25, 28, 31, $34{\pm}1^{\circ}C$, RH 20~30%). Temperature-dependent developmental rates and development completion models were developed. E. japonica was successfully developed from egg to adult in $16{\sim}31^{\circ}C$ temperature regimes. Developmental duration was the shortest at $34^{\circ}C$ (8.3 days) and the longest at $16^{\circ}C$ (23.4 days) from egg to pupa development. Pupal development duration was the shortest at $28^{\circ}C$ (7.3 days). Total immature-stage development duration decreased with increasing temperature, and was the shortest at $31^{\circ}C$ (16.3 days) and the longest at $16^{\circ}C$ (45.4 days). The lower developmental threshold was $7.8^{\circ}C$ and thermal constant required to complete total immature-stage development was 370.4 degree days. Among four non-linear temperature-dependent developmental rate models, Briere 1 model had the highest adjusted R-squared (0.96). The distribution model of development completion for total immature stage development of E. japonica was well described by all model ($r^2_{adj}=0.90$) based on the standardized development duration. These results of study would be necessary not only to develop population dynamics model but also to understand fundamental biology of E. japonica.

Biology of Three Species of the Genus Tipula (Diptera: Tipulidae) in Korea (한국산 Tipula속(파리목 : 각다귀과) 3종의 생태)

  • Kim, Dong-Sang;Lee, Jong-Eun
    • Korean journal of applied entomology
    • /
    • v.46 no.2
    • /
    • pp.201-212
    • /
    • 2007
  • This study was conducted to investigate the biology of three species, Tipula latemarginata Alexander, T. nova Walker and T. aino Alexander, of the Genus Tipula in Korea. Field surveys for the biology of the species were carried out at the three sites of Neaseong Stream area in Bongwha County from January 2001 to December 2005. Also many individuals of the species were reared in laboratory to investigate the biology. The larval habitats of the species were streams, rivers, paddy fields, damp earth or leaky revetments. The Tipula larvae were herbivorous. Newly-hatched first instar larvae fed on soft algae, and the larvae gradually fed on leaves, stems and roots of a variety of plants or hard leaf litters, as they grew. During the molting of the larvae their body kept moving from left to right and up and down. Molting usually took not more than 2 hours, and about four hours after molting, the larvae started to eat heavily. The Tipula larvae in aquatic places moved to drier land for pupation and went through short prepupal stage lasting 1-2 days for pupation at fourth instar larval stage. When emerging, the Tipula pupae placed their head and thorax on the earth, but the other parts in the earth. Emergence from the pupal case required about 20 min. to one hour. Mating of Tipula adults took place within 5-7min. after emergence and the duration of mating was about 40 min. The female adults of the species laid eggs by walking with 3 pairs of legs over the damp earth or algal beds. Their body was positioned vertically on the ground with their wings spread $120^{\circ}$ and legs landed on the surface. The oviposition usually took place from one day to 4 days after emergence and the number of eggs carried by female adults were an average of 501-760 per individual. Tipula adults didn't normally feed, and drank water only occasionally. For a few days after emergence, the adults reared in the laboratory rarely drank water. As they neared to death, however, they frequently drank water. The longevity of adults reared in the laboratory with only water during the summer was ca. 4-9 days and males usually survived a little longer than females. The longevity of T. nova was increased 3 times or more as much by feeding them 3% sugar water. Male adults of T. latemarginata outnumbered female adults by 2.6 : 1 in the fields.

Studies on the Effects of Atmospheric Pollution in Sericulture -Injuries of Sulphur Dioxide and Cadmium on Parent Silkworms Rearing- (대기공해가 양잠에 미치는 영향에 관한 연구 -원잠종 사육에 있어서 아황산 가스 및 카드미움의 해를 중심으로-)

  • 이종철;최진협;배계선;손흥대
    • Journal of Sericultural and Entomological Science
    • /
    • v.21 no.1
    • /
    • pp.36-44
    • /
    • 1979
  • Those studies were examined rearing two varieties on Japanese descent and two varieties of Chinese descent by feeding polluted mulberry leaves, non-polluted ones and water-cleaned ones respectively to find effects of air-pollution on the economic characters of silkworms and analysis of contents of Sulphur and Cadmium in the mulberry leaves and silkworms as followings; 1) Japanese descent of polluted part was delayed about 2.5 days than non-polluted part, Chinese descent was delayed about 4 days or inequal and water-cleaned part was medium in the silkworm larval duration. 2) Results of maximum weight of 5th instal, cocoon layer weight and cocoon weight were decreased in due order non-polluted, water-cleaned and polluted in the factors of mulberry 3) Pupal ratio of Japanese descent was not shown statistical significance, but Chinese descent was revealed it obviously in the factors of mulberry leaves. 4) In the resistance of polluted mulberry leaves, Chinese descent was feeble obviously than Japanese and there were some difference even through among the same varieties. 5) The content of S and Cd of polluted area mulberry leaves was increased about 30% respectively than non-polluted area. 6) The fed part of non-polluted mulberry leaves was S 0.41% and Cd 0.013 ppm water-cleaned part was S 0.47% and Cd 0.024 ppm and polluted part was S 0.52% and Cd 0.042 ppm in the contents of S and Cd of silkworm larvae. 7) The contents of S and Cd didn't make visible injury in mulberry leaves but made it seriously in silkworm larvae. 8) The injury of dust on mulberry leaves was more serious than that of quality of mulberry leaves by air-pollution in the economic characters of silkworm. 9) As above results, Chinese descent should avoid contaminated area and it rearing by water-cleaned mulberry leaves can get noticable results in inevitable case on selection of parents silkworm rearingzone.

  • PDF

Ecology of the Black Soldier Fly, Hermetia illucens (Diptera: Stratmyidae) in Korea (국내 서식하는 아메리카동애등에(Hermetia illucens)의 생태 특성)

  • Kim, Jong-Gill;Choi, Young-Cheol;Choi, Ji-Young;Kim, Won-Tae;Jeong, Gil-Sang;Park, Kwan-Ho;Hwang, Sock-Jo
    • Korean journal of applied entomology
    • /
    • v.47 no.4
    • /
    • pp.337-343
    • /
    • 2008
  • This study was conducted to investigate the distribution pattern, ecological characteristics and life cycle of the Black Soldier Fly (Hermetia illucens, BSF). The BSF was widely distributed throughout Korea. The insect was mainly found in the vicinity of and in cattle sheds, manure sheds, living waste dump grounds, and food waste dump grounds. Developmental characteristics of the BSF are as follows: the egg was long oval shaped of 887 ${\mu}m$ in the major axis and 190 ${\mu}m$ in the minor axis; it weighed 24 ${\mu}g$. Female oviposited ca. 1,000 eggs on average; eggs hatched in 81 hours under laboratory condition ($27^{\circ}C$, 60% R.H.). The duration of the larval stage was approximately $15{\sim}20$ days. The size of the last instar larvae was 21 mm. The cuticle of the pupae gradually acquired red-brown color and the size of them was 19 mm. The pupal stage was shorter for females (16 days) than males (15 days). Adults were sized about $13{\sim}20$ mm long and black-colored. The life span of adult insects was $5{\sim}8$ days for the first generation (June${\sim}$July), $7{\sim}10$ days for the second generation (Aug.${\sim}$Sept.), and $13{\sim}18$ days for the third generation (Sept.${\sim}$Oct.). Mating started on the next day of emergence and actively occurred at the third day after emergence. Mating mostly occurred between 10:00 and 16:00 during which light intensity is highest. Egg-laying started on the third day and was most frequent from the fourth to the sixth day after emergence. Similar to mating time, females oviposited mostly between 10:00 and 16:00.

Purification and Biological Activity of Ecdysterone from Korean Achyranthes radix (韓國産 牛膝의 Ecdysterone 抽出과 그 生理活性에 관한 硏究)

  • Kim, Jeong-Il;Lee, Jae-Yong;Kim, Chun-Su;Park, Kwang-E.
    • Journal of Sericultural and Entomological Science
    • /
    • v.25 no.1
    • /
    • pp.1-20
    • /
    • 1983
  • It has been known that the insect molting hormone and its analogues exist also in plant kingdom and their concentration has been found to be about 0.1~2.0% of dry matter, which is equivalent to $10^3{\sim}10^5$ times of those in insects. This study was carried out; 1) to isolate the phytoecdysones from Korean Achyranthes radix and characterize their physico-chemical properties. 2) to investigate the biological activity of this phytoecdysone on Bombyx mori larvae. The resuls were summarized as follows; 1. The extraction method of phytoecdysones was optimized by three consecutive reflux for 1hr using 200g of dried and milled radix per 1l methanol. 2. The purification from the crude extract was made by a series of steps such as precipitation of gum-type polymer with n-Butyl acetate, adsorption on technical grade silica and chromatography with neutral alumina. The conditions of each step were optimized and the resulting crude crystal was about 500mg per kg dry radix. 3. The crude crystal from the cultivated Achyranthes(Achyranthes japonia) contained ecdysterone (20-hydroxyecdysone) and inokosterone in the proportion of one to one. In order to separate these, a series of processes such as acetylation, separation by alumina column chromatography deacetylation by alcoholysis, deionization and crystallization were introduced and optimized 125mg of ecdysterone and 18mg of inokosterone per kg dry radix were thus obtained. 4. The wild Achyranthes (Achyranthes obtusifolia) radix was found to contain the ecdysterone only. A 285mg of ecdysterone was crystallized per kg dry radix. 5. Isolated ecdysterone, inodosterone and acetylated compounds were characterized by IR., UV., NMR spectroscopy, mp, TLC and densitometry. 6. Ligation experiment was undertaken to confirm the biological activity of the purified ecdysterone; the ecdysterone could induce larval-pupal metamorphosis in the ligated abdomen of 4th instar larvae injecting 0.5~1.0${\mu}g$. 7. By ecdysterone feeding experiment using artificial diet, it was elucidated that the critical time of feeding would be the first half of each instar resulting in increased weight of silk layer. 8. The ecdysterone was fed to 5th instar silkworm at the level of 1, 2, 3, 5ppm of dry feed of artificial diet containing 5% mulberry leaves for 72hrs. At 2ppm of the concentration. body weight and silk layer weight were arrived at maximum. But at higher concentrations body weight and silk layer weight decreased than the control group. At 2ppm of the concentration, body weight was increased by 12.5%. 9. Feeding 2ppm of ecdysterone at the later half of 5th instar, the duration of larvae was shortened.

  • PDF

Effect of Temperature on Development and Reproduction of the Cotton Caterpillar, Palpita indica(Lepidoptera: Pyralidae) (목화바둑명나방(나비목:명나방과)의 발육과 생식에 미치는 온도의 영향)

  • Shin, Wook-Kyun;Kim, Gil-Hah;Song, Cheol;Kim, Jeong-Wha;Cho, Kwang-Yun
    • Korean journal of applied entomology
    • /
    • v.39 no.3
    • /
    • pp.135-140
    • /
    • 2000
  • Development and reproduction of the cotton caterpillar, Palpita indica, were investigatedunder different temperatures (15 .O, 17.5, 20.0, 22.5, 25 .O, 27.5, 30.0, 32.5, and 35 .O$^{\circ}$C). Duration fromegg to pre-adult of the cotton caterpillar were ranged from 68.6 days at 175$^{\circ}$C to 19.7 days at 35.0% (3.5times shorter growth period compared with that at 17S$^{\circ}$C). At 15.0$^{\circ}$C, cotton caterpillar eggs developedto the last larval instar but were not able to go through the pupal stage. The lower developmentalthreshold temperatures and degree-days of egg, larva, pupa, and complete development were 13.4, 10.6,11.6, and 11.5"C and 55.3,251.5, 138.3, and 479.8 degree days, respectively. The hatching, pupation andemergence rates were higher at 25.0eC and 27.5"C compared with other temperatures. The survival ratefrom the hatched larva to adult was the highest at 27.5"C. The preoviposition and the adult longevity were11.5 and 30.6 days at 17.5"C and 1.5 and 9.2 days at 35.0$^{\circ}$C, respectively. The mean fecundity perfemales was greater at 25.0$^{\circ}$C and 27.5"C compared with other temperatures. Mean generation time indays (T) was shorter on higher temperature. Net reproductive rate per generation (R,) was the lowest atthe highest temperature as well as at the lowest, and it was 199.1 which was the highest at 27.5"C. Theintrinsic rate of natural increase (r,) was highest at 30.0$^{\circ}$C as 0.148. As a result, optimum ranges oftemperature for P. indica growth were between 25.0-32.5"C .emperature for P. indica growth were between 25.0-32.5"C .t;C .

  • PDF