• Title/Summary/Keyword: Punching Shear

Search Result 221, Processing Time 0.022 seconds

Experimental Study on the Punching Shear of foundation using PC columns (PC 기둥을 이용한 기초의 뚫림 전단강도에 관한 실험적 연구)

  • Jang, Il-Young;Park, Hoon-Gyue;Kim, Yeong-Geun;Park, Seung-Min;Kim, Seong-Gyum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.409-410
    • /
    • 2010
  • Since the 1980s with the development of construction techniques over 100 floors above 50 floors of the skyscraper was in progress. The advent of high-rise buildings due to an increase in foundation thickness was inevitable. at the moment, construction period and economic efficiency can be improved from decrease of the foundation thickness.

  • PDF

An Experimental Study on Reinforced Effect Using Double Adhensive Panels in Bridge Deck Slabs (프리케스트판을 이용한 교량상판 단면증설 보강공법에 관한 실험적 연구)

  • 박정기;하경민;지한상;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.791-796
    • /
    • 2000
  • Purpose of this study is to analyze the characteristics and reinforcement effects of restored the RC bridge deck with small precast panel through static load tests and to provide the basic information for the damaged slab decks. In the tests for realizing movement of general RC bridge slabs, 6 samples are prepared and tested. All reinforced samples are restored with 1 or 2-layers precast panels by epoxy mortar. The movement of restored slabs is analyzed and compared with the behavior of non-restored slabs. In result of these tests, tension cracks due to bending moment are show, and after static load test there happens finally a punching shear failure, which is the general type of RC bridge failure. The tests show that restoration of the RC slab results in increasing of loading capacity about 30~50% an restoring panels are stick to slab and moving with slab under loading test.

  • PDF

Strength Evaluation of Inverted T-shaped Composite Basement Wall Based on Failure Mechanisms (파괴기구에 근거한 역 T형 합성지하벽의 강도평가)

  • 박지환;서수연;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.415-420
    • /
    • 2003
  • This Study is performed to analyze the behavior of inverted T-shaped Composite Basement Wall(CBW). For this, it is purposed to analyze the failure mechanisms of inverted T-shaped composite basement wall and propose the method of evaluating strength for design. The failure mechanisms would be devided into 4 type mechanisms from previous experimental results, that is hanger failure, punching shear failure, flexural failure and the buckling of H-pile. A strength evaluation procedure for CBW is induced by analyzing respective failure mechanism. Then, the strength for actual structure consisted of inverted T-shaped composite basement wall was evaluated and the expected failure mechanism was determined.

  • PDF

Flexural Behavior of I-beam Composite Hollow Slabs (I형강 합성 중공바닥판의 휨거동)

  • 김대호;심창수;박창규;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.421-426
    • /
    • 2003
  • For the replacement of deteriorated concrete decks or wider-span slab, composite slab could be very attactive due to higher stiffness and strength. Based on the previous research, a modified I-beam composite hollow slab was suggested. In order to investigate the static flexural behavior of the proposed composite slab and to suggest its flexural design method, experiments were performed. Judging from the tests, a composite slab with I-beam having a semi-circle hole showed better structural performance. The effect of web details on the flexural stiffness was negligible. Flexural stiffness, ultimate strength, and ductility of the composite slabs were significantly greater than the RC slab due to composite action. While the failure of the RC slab was punching shear failure, the composite hollow slab showed flexural cracking and failure by yielding of the I-beams and crushing of concrete. Therefore, the current one-way design concept is appropriate for the design of I-beam composite hollow slab.

  • PDF

Bending Tests of Precast Deck with Loop Joints (루프 이음 프리캐스트 바닥판의 휨실험)

  • 류형근;장승필;김영진;주봉철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.518-523
    • /
    • 2003
  • In domestic composite bridges, it has been reported that most failure is occurred in deck and the type of failure was mainly punching shear failure. Therefore to increase a life of bridges and reduce maintenance costs, an improvement of a durability of slabs is needed. In these respects, precast deck can be very useful. In a composite bridge with precast decks, it is required to notice behavior of transverse joints between decks. In this paper, bending tests of precast deck with loop joints were conducted. From the results, the validity of loop joints for continuity of deck was observed and especially an interval of loop joint, diameter of loop and reinforcement were checked.

  • PDF

Experimental Study on the Determination of Optimum Thickness of RC Deck Slabs by 100, 120 MPa High-Strength Concrete (100, 120 MPa급 고강도 콘크리트 적용 바닥판 적정두께 결정을 위한 실험적 연구)

  • Bae, Jae-Hyun;Hwang, Hoon-Hee;Park, Sung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.38-45
    • /
    • 2018
  • Bridges are structures where safety must be ensured. Generally, the destruction mechanism of bridge deck shows punching shear. Lately, the high-strength concrete is often used to increase the lifespan of bridges. The benefits of using the high-strength concrete are that it increases the durability and strength. On the contrary, it reduces the cross-section of the bridges. This study suggested the optimal thickness of bridge deck with application of high-strength concrete and the study evaluated its structural performance experimentally. The evaluation result shows that 180 mm and 190 mm of thickness are optimal for 100 MPa and 120 MPa high-strength concrete bridge deck respectively.

Optimize Design for 5MW Offshore Wind Turbine Sub-structure Jack-up Platform (5MW급 해상풍력 Sub-structure Jack-up Platform 최적화 설계)

  • Jeon, Jung-Do;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.115-122
    • /
    • 2012
  • The purpose of this study is to optimize the design of the jack-up platform for 5MW offshore wind turbine system. Considering all the environmental loads such as currents, waves, winds and so on, the members of structures have been designed and optimized based on the AISC and API-RP-2A to be within the allowable stress even in the most critical and severe condition. In addition to the above strength check of structural members, the joint punching shear check and the hydrostatic collapse check are also performed where they are required for the design. The design life of the jack-up platform is 50 years for the static strength check and the fatigue design life is 100 years including to the DFF(Design Fatigue Factor) of 2.0 to have enough stability and workability for the design optimization.

Analytical Model to Predict Punching Shear Strength of Flat Plate Structures (플랫 플레이트의 뚫림전단 성능에 관한 해석적 연구)

  • Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.211-214
    • /
    • 2010
  • 플랫 플레이트 시스템은 기둥 주위의 국부적인 응력집중 현상으로 인한 뚫림전단 파괴에 대해 취약하다. 따라서 유한요소해석을 통해 이러한 플랫 플레이트 시스템의 뚫림전단 성능을 평가하고자 한다. 슬래브의 전단을 고려하기 위하여 Reissner-Mindlin 가정을 바탕으로 한 등매개변수 감절점 쉘 요소를 적용하였다. 콘크리트의 재료적 비선형 거동을 고려하기 위해 압축거동은 수정압축장 이론을 적용하였으며 인장강성효과 또한 콘크리트 재료모델에 반영하였다. 기존 실험결과와의 비교를 통해 타당성을 검증하고자 하였다. 비교 결과, 약 16%의 오차율을 보였으며 보강비가 낮은 실험체에 비해 보강비가 높은 실험체가 실험결과에 가까운 값을 예측하는 것으로 나타났다.

  • PDF

Seismic Design Provisions and Revisions to the Guides for RC Flat Plate Systems in the US (미국에서의 RC무량판 내진설계기준과 개정 방향)

  • Kang, Thomas H.K.;Park, Hong-Gun
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.25-36
    • /
    • 2008
  • Seismic design of reinforced concrete flat plate structures is often complicated as it deals with three dimensionality and continuous spans, and mostly material complexity and reinforcement variation. A great degree of uncertainty in such structural and material properties is thus inherent in the RC flat plate systems, and hinders simplification of the design process in terms of slab flexure, unbalanced moment transfer at a slab-column connection, and punching shear. For these reasons, there have been substantial changes and updates in building codes relating to flat plates and slab-column connections over a handful of decades. Also, for the same reason, some of codes never have been revised. As a consequence of nonsimultaneous development of each provision, it tends to confuse structural engineers when using a mixture of all different US code provisions. In this paper, in the step-by-step logical order, seismic design of the RC flat plate systems is re-organized and clarified to make it easier to apply. Furthermore, recent changes or proposed changes are introduced, and are explained as to how it will apply in practice.

Fatigue Strength Evaluation of the Clinch Joints of a Cold Rolled Steel Sheet

  • Kim, Ho-Kyung
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.131-138
    • /
    • 2009
  • Static tensile and fatigue tests were conducted using tensile-shear specimens to evaluate the fatigue strength of a SPCC sheet clinch joint. The maximum tensile strength of the specimen produced at the optimal punching force was 1750 kN. The fatigue endurance limit (=760 N) approached 43% of the maximum tensile load (=1750 N) at a load ratio of 0.1, suggesting that the fatigue limit is approximately half of the value of the maximum tensile strength. The FEM analysis showed that at the fatigue endurance limit, the maximum von-Mises stress of 373 MPa is very close to the ultimate tensile strength of the SPCC sheet (=382 MPa).

  • PDF