• Title/Summary/Keyword: Punching Clearance

Search Result 17, Processing Time 0.024 seconds

Design of Two-way Image Acquisition System for 25\μm Tool Alignment in the Micro Hole Punching (25\μm 홀 펀칭 공구 정렬을 위한 광학 시스템 설계)

  • 주병윤;임성한;오수익
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.190-204
    • /
    • 2004
  • The objective of this study is to develop a highly accurate micro tool alignment system applicable to the micro machining technology. In a specific application such as micro hole punching, radial clearance between micro tools is order of a few micron. Under this micron scale tool clearance, accuracy of tool alignment is very important for ensuring hole quality. In the present study, a two-way image acquisition system was developed, which can produce overlapped image of both micro tools that face each other, and applied to the tool alignment in the micro punching. Also, to meet alignment accuracy of tools within $1\mu\textrm{m}$, the cross correlation image processing algorithm was employed. With this system, $25\mu\textrm{m}$ punching tools with $1\mu\textrm{m}$ radial clearance could be accurately aligned.

A Study on Micro Hole Punching with Soft Die Plate (소프트 다이 플레이트를 이용한 미세 구멍 펀칭 연구)

  • Yoo J. H.;Joo B. Y.;Jeon B. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.260-265
    • /
    • 2002
  • In micro hole punching process, it is very difficult to align punch with die hole. Misalignment can cause a falling-on in hole quality and breakage of punch and die. Micro punching using soft die plate without a die hole has a big advantage because it is not necessary to align punch with die hole and to consider die clearance. Soft die plates are made by polymers or hard rubbers which are softer than metals. In this study, several micro punching experiments are conducted. Micro punching test with some materials shows that micro hole punching is feasible with some soft die plates. Through the section shape obtained by mounting and polishing, the punched hole quality is measured and the shapes of burr and dome we studied.

  • PDF

Development of the technique for prediction of the hub-hole crack with the punching effect (펀칭 효과를 고려한 허브홀의 파단 예측기법 개발)

  • Lee J. S.;Ko Y. K.;Huh H.;Kim H. K.;Park S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.362-365
    • /
    • 2005
  • The hub hole is usually formed with a flanging process followed by a blanking process of a ]tole. Since the hole is made by blanking, the blanked surface is so rough that the formability in the region is rather poor. The emerging task is to identify the formability of the blanked region in the forming simulation and to relate the criterion to the real forming process by experiments. In this paper, hole expansion tests are carried out with respect to various hole conditions to verify the hole condition effect on the hole expansion ratio. The hole of specimens is made by machining or punching. In the case of punching, two different punching clearances are used for making the hole. From the results of test, fracture mechanism of the hole expansion is explained.

  • PDF

Effect of Punching Conditions on the Stretch Flange Formability of Cold rolled Steels for Deep Drawing (편칭조건이 가공용 냉연강판의 신장플랜지 성형성에 미치는 영향)

  • 전영우
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.161-164
    • /
    • 1999
  • In order to investigate the effect of punching condition on the stretch flange formability of sheet for deep drawing hole expansion tests at various edge condition were done. Edge conditions were changed by altering tool clearances artifical defects grinding and deburring. For a determination of optimum edge condition of side panel of automobile punched section analysis and forming results were studied and the laboratory test results were used. In case of considered side panel tool clearance should be less than 15% and punched edge should be uniform without defects for safe forming

  • PDF

Burrless shearing of the micro wire (미세 와이어의 버 없는 전단에 관한 연구)

  • Kim Woong-Kyum;Hong Nam-Pyo;Kim Heon-Young;Kim Byeong-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.52-56
    • /
    • 2006
  • Punching tools like an electrodes are made by milling or etching or EDM. These methods had time consuming, low efficiency and air pollution. So, we have developed a shearing device which counter punching method for burrless cutting of micro wire. Using the straightened SUS304 wire with $200{\mu}m$ diameter, we confirmed the tendency of the shear plane for punch tools. It was impossible to completely remove the bun in the shearing process. In order to minimize the burr size and fine shear plane, we have accomplished the various experiment conditions such as the U-groove, the effect of the counter punch, shear angle and clearance. The results of the experiments show that indentation, slip plane and bent shape were related to the shear angle and clearance.

Evaluation of Punching Process Variables Influencing Micro Via-hole Quality of LTCC Green Sheet (LTCC 기판의 미세 비아홀 펀칭 중 공정 변수의 영향 평가)

  • Baek S. W.;Rhim S. H.;Oh S. I.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.277-281
    • /
    • 2005
  • LTCC(Low temperature co-fired ceramic) is being recognized as a significant packaging material of electrical devices for the advantages such as relatively low temperature being needed for process, low conductor resistance and high printing resolution. In the process of LTCC electrical devices, the punched via-hole quality is one of the most important factors on the performance of the device. However, its mechanism is very complicated and optimization of the process seems difficult. In this paper, to clarify the process, via-hole punching experiments were carried out and the punched holes were examined in terms of their burr formation. The effects of thickness of PET sheet, ceramic sheet and punch-to- die clearance on via-hole quality were also discussed. Optimum process conditions are proposed and a factor $\kappa$ is introduced to express effect of the process variables.

A Study on the Burr Formation in Shearing with Al Alloy (Al합금의 전단시 버어에 관한 연구)

  • 고대림;전치용;김진무;안흥천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1440-1443
    • /
    • 2004
  • Shearing including punching, blanking, trimming, slitting, etc is one of the most frequently used processes in sheet metal manufacturing. It has been widely used for manufacturing autobody, electronic components, aircraftbody, etc. In this paper, it has been researched by the experiment to examine the effect of burr height corresponding to die clearance, cutting angle, tool sharpness, etc. This paper presents the experimental results with using Al alloy sheet.

  • PDF

Evaluation of punching process variables influencing micro via-hole quality of LTCC green sheet (LTCC 기판의 미세 비아홀 펀칭 중 공정 변수의 영향 평가)

  • Baek S. W.;Rhim S. H.;Oh S. I.;Yoon S. M.;Lee S.;Kim S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.260-265
    • /
    • 2004
  • LTCC(Low temperature co-fired ceramic) is being recognized as a significant packaging material of electrical devices for the advantages such as relatively low temperature being needed for process, low conductor resistance and high printing resolution. In the process of LTCC electrical devices, the punched via-hole quality is one of the most important factors on the performance of the device. However, its mechanism is very complicated and optimization of the process seems difficult. In this paper, to clarify the process, via-hole punching experiments were carried out and the punched holes were examined in terms of their burr formation. The effects of thickness of PET sheet and ceramic sheet and punch-to-die clearance on via-hole quality were also discussed. Optimum process conditions are proposed and a factor k is introduced to express effect of the process variables.

  • PDF

A Study on The Burr Formation in Shearing Steel for Automobile Parts (자동차용 강판의 전단작업시 버어에 관한 연구)

  • Kim J. M.;Ko D. L.;Ahn H. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.19-22
    • /
    • 2004
  • Shearing including punching, blanking, trimming, slitting, etc is one of the most frequently used processes in sheet metal manufacturing. It has been widely using for manufacturing autobody, electronic components, aircraftbody, etc. In this paper, it has been researched by the experimental investigation to examine the influence of shearing processes parameters such as clearance, cutting angle, material properties, etc. From the results of experiment, it has shown that it gives the small variations at burr height below the proper clearance and it also presents that it is no affected the variations of cutting angle.

  • PDF

A Study on Fracture Behavior in Shear Band during Micro Hole Punching Process (미세 홀 펀칭시 전단 파괴 거동 연구)

  • 유준환;임성한;주병윤;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.230-235
    • /
    • 2003
  • In the micro hole punching, the size and shape of burr and burnish zone are very important factors to evaluate quality of micro holes which depend on punch-die clearance, stain rate, workpiece material and etc. To get micro holes with small burr and wide burnish zone for industrial demands, not only the parametric study but also a study on fracture behavior in shear band are necessary. In this study, 100 $\mu\textrm{m}$, 25 $\mu\textrm{m}$ micro holes in diameter were fabricated on brass (Cu63/Zn37) and SUS 316 foils as aspect ratio 1:1, and the characteristics of micro holes was investigated comparing with man holes over several mm by scanning electron microscopic views and section views. Like macro hole, micro hole is also composed of 4 portions, rollover, burnish zone, fracture zone and it shows similar fracture behavior in shear band, but? by high strain rate (10$^2$∼ 10$^3$s$\^$-1/) unlike macro hole fabrication and increment of relative grain size several different results are shown.

  • PDF