• Title/Summary/Keyword: Punching

Search Result 427, Processing Time 0.028 seconds

Deformability of Flat Plate Subjected to Unbalanced Moment (불균형 휨모멘트를 받는 플랫 플레이트의 변형능력)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.482-493
    • /
    • 2003
  • Flat plate structures subjected to lateral load have less deformability than conventional moment frames, due to the brittle failure of plate-column connection. In the present study, parametric study using nonlinear finite element analysis was performed to investigate the deformability of flat plates. The numerical results show that as number of continuous spans increases, the deformability of flat plates considerably decreases. Therefore, existing experiments using sub-assemblages with 1 or 2 spans may overestimate the deformability of flat plates, and current design provisions based on the experiments may not be accurate in estimating the deformability. A design method estimating the deformability was developed on the basis of numerical results, and verified by comparison with existing experiment. In the proposed method, the effects of primary design parameters such as direct shear force, punching shear capacity, aspect ratio of connection, number of spans, and initial stiffness of plate can be considered.

Seismic Performance of Reinforced Concrete Flat Plate Frames according to Gravity Shear Ratio (중력전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진 성능 평가)

  • HwangBo, Jin;Han, Sang-Whan;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • This study evaluates the seismic performance of reinforced concrete (RC) flat plate structures relation to the gravity shear ratio. For this purpose, 3 and 7 story framed buildings were designed for gravity loads only. Subsequently, a nonlinear static pushover analysis and a nonlinear time history analysis for the prototype buildings were carried out. In the nonlinear analysis, newly propose analytical slab-column joint model was utilized to capture punching shear failure and fracture mechanism in the analysis. The analytical results showed that seismic performance of RC flat plate frame is strongly influenced by the gravity shear ratio. In particularly, in the RC flat plate frame with a large gravity shear ratio the lateral strength and maximum drift capacity decreased significantly.

Osteogenic Gene Expression on Anodizing Titanium Surface (양극산화 처리된 타이타늄 표면에서 골형성 유전자 발현)

  • Kim, Won-Seok;Kim, Young-Seok;Jeon, Seong-Bae;Jun, Sang-Ho;Lee, Eui-Suk;Jang, Hyon-Seok;Kwon, Jong-Jin;Rim, Jae-Suk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.2
    • /
    • pp.91-99
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the expression of osteogenic genes associated with bone regeneration on anodizing titanium surface. Methods: $20{\times}20{\times}1$ (mm) commercially pure titanium plate was made, one group was pure titanium, second group was punched, and last group was punched and anodized by electrochemical method. Through the osteogenic cell culture model, the expression of extracellular matrix proteins, such as bone morphogenetic protein-2, bone sialoprotein, aggrecan, osteocalcin, Alkaline phosphatase, collagen I had been evaluated by Real-time polymerase chain reaction, and the morphology of growing cells was evaluated by scanning electron microscopy. Results: The attachment of mesenchymal stem cell was even and well-oriented on all Ti surfaces. The osteogene expression was increased on punching groups but, decreased on anodizing surfaces in 3 week samples. Conclusion: Punched anodizing Ti has possibility be using as a dental implant material, but further in vivo study would be needed.

Diligence/Indolence Management Scheme Using WiFi Access Points (와이파이 무선접근점을 이용한 근태관리 기법)

  • Jo, Hyun Joon;Park, Jin Soo;Lee, Dong Gi;Kim, Dong Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1395-1400
    • /
    • 2014
  • Diligence/Indolence records are the key data for a human resource management and the basic data to measure the salaries of the employees. However, existing mechanical or electro-magnetic diligence/indolence management systems have the problems that the systems are often incorrect or require much cost to build them. In this paper, we design and implement the diligence/indolence management system using a smart device of an employee. To measure the data of the diligence/indolence, the implemented system acquires the location data of the employee using the MAC addresses of both a smart device and access points of the WiFi and transfers the data of punching-in/out based on the acquired location to a server. The benefit of the proposed system is that it is easy for small business to use the proposed D/I management system with low cost because the system exploits smart devices and WiFi access points installed previously.

Evaluation of Shear Strength for Reinforced Flat Plates Embedded with GFRP Plates (매립형 GFRP 판으로 보강된 플랫 플레이트의 전단강도 평가)

  • Hwang, Seung Yeon;Kim, Min Sook;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.121-128
    • /
    • 2014
  • In this study, The purpose of this study is to experimentally investigate the shear behavior of reinforced flat plate embedded with GFRP(glass fiber reinforced polymer) plate with openings. The GFRP shear reinforcement is manufactured into a plate shape with several openings to ensure perfect integration with concrete. The test was performed on 7 specimens. the parameters include the type of reinforcement and amount of the shear reinforcement., From the test, we analysed the crack, failure mode, Strain, load-displacement graph. a calculation of the shear strength of reinforced flat plate with GFRP plate based on the ACI 318-11 was compared with the test results. The results of the experiment indicate that GFRP plate is successfully applied as a shear reinforcement in the flat plate under punching shear.

Soil and ribbed concrete slab interface modeling using large shear box and 3D FEM

  • Qian, Jian-Gu;Gao, Qian;Xue, Jian-feng;Chen, Hong-Wei;Huang, Mao-Song
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.295-312
    • /
    • 2017
  • Cast in situ and grouted concrete helical piles with 150-200 mm diameter half cylindrical ribs have become an economical and effective choice in Shanghai, China for uplift piles in deep soft soils. Though this type of pile has been successful used in practice, the reinforcing mechanism and the contribution of the ribs to the total resistance is not clear, and there is no clear guideline for the design of such piles. To study the inclusion of ribs to the contribution of shear resistance, the shear behaviour between silty sand and concrete slabs with parallel ribs at different spacing and angles were tested in a large direct shear box ($600mm{\times}400mm{\times}200mm$). The front panels of the shear box are detachable to observe the soil deformation after the test. The tests were modelled with three-dimensional finite element method in ABAQUS. It was found that, passive zones can be developed ahead of the ribs to form undulated failure surfaces. The shear resistance and failure mode are affected by the ratio of rib spacing to rib diameter. Based on the shape and continuity of the failure zones at the interface, the failure modes at the interface can be classified as "punching", "local" or "general" shear failure respectively. With the inclusion of the ribs, the pull out resistance can increase up to 17%. The optimum rib spacing to rib diameter ratio was found to be around 7 based on the observed experimental results and the numerical modelling.

Comparison of Shear Strength Equation for Flat Plates with GFRP Plate (GFRP 판으로 보강된 플랫 플레이트의 전단강도식에 관한 규준의 비교 분석)

  • Kim, Min Sook;Hwang, Seung Yeon;Kim, Heecheul;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.247-254
    • /
    • 2014
  • In this study, shear test performed to investigate the shear behavior of flat plate that reinforced by embedded GFRP(glass fiber reinforced polymer) plate with openings. Shape of the GFRP shear reinforcement is a plate with several openings to ensure perfect integration with concrete. The test parameters include the distance between the column face and the first line of GFRP plate and number of GFRP plate vertical strip. The result of test showed that when number of GFRP plate vertical strip was increased, shear strength improved. The shear strength for flat plate reinforced GFRP plate in various codes including ACI 318, BS 8110, EUROCODE 2, and KCI were compared to provide more rational approach for reinforced concrete flat plates with GFRP plate.

Assessment of Resistance to Application Environment of Geotextile Composites (복합형 지오텍스타일의 적용환경에 대한 저항성 평가)

  • Jeon, Han-Yong;Lyoo, Won-Seok;Ghim, Han-Do;Chung, Chin-Gyo;Cho, Bong-Gyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.3
    • /
    • pp.25-38
    • /
    • 2003
  • Geotextile composites to improve the resistance to the application environment were manufactured of recycled polyester geotextile with carbon black as ultraviolet stabilizer and polypropylene geotextile by needle-punching method. Mechanical properties, ultraviolet resistance and chemical stability were evaluated. Retention ratio of tensile properties of polypropylene geotextiles were decreased about 50% with the exposed condition by ultraviolet but those of geotextile composites showed the slightly decrease. Geotextile composites which have larger weights of recycled polyester geotextile were more stable against ultraviolet. For chemical stability, the changes of tensile strength values of geotextile composites were in the range of -20~+10% at the various chemical conditions.

  • PDF

Study on the Optimization of Parameters for Burring Process Using 980MPa Hot-rolled Thick Sheet Metal (980MPa급 열연 후판재 버링 공정의 변수 최적화 연구)

  • Kim, S.H.;Do, D.T.;Park, J.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.291-300
    • /
    • 2021
  • Currently, starting with electric vehicles, the application of ultra-high-strength steel sheets and light metals has expanded to improve mileage by reducing vehicle weight. At a time when internal combustion engine vehicles are rapidly changing to electric vehicles, the application of ultra-high-strength steel is expanding to satisfy both weight reductions and the performance safety of the chassis parts. There is an urgent need to improve the quality of parts without defects. It is particularly difficult to estimate the part formability through the finite element method (FEM) in the burring operation, so product design has been based on the hole expansion ratio (HER) and experience. In this study, design of experiment (DOE), analysis of variance (ANOVA), and regression analysis were combined to optimize the formability by adjusting the process variables affecting the burring formability of ultra-high-strength steel parts. The optimal variables were derived by analyzing the influence of variables and the correlation between the variables through FE analysis. Finally, the optimized process parameters were verified by comparing experiment with simulation. As for the main influence of each process variable, the initial hole diameter of the piercing process and the shape height of the preforming process had the greatest effects on burring formability, while the effect of a lower round of punching in the burring process was the least. Moreover, as the diameter of the initial hole increased, the thickness reduction rate in the burring part decreased, and the final burring height increased as the shape height during preforming increased.

The features of pattern structure in the raglan sleeve as observed in modern fashion (현대 패션에 나타난 래글런 슬리브의 패턴구성 특징에 관한 연구)

  • Shin, Jang-Hee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.20 no.4
    • /
    • pp.95-104
    • /
    • 2018
  • This study classified the figurative features of the raglan sleeves presented in the Spring and Summer Collections and Fall and Winter Collections abroad in 2010 and 2018 and analyzed the production methods and patterns of the classified raglan sleeves. The analysis results are described below. The raglan sleeves in the latest fashion trends were classified into Type H, Type A, Type O and Type Y per shape. The production features of raglan sleeves in the latest fashion trends included the cutting lines in various shapes, a flounce that made shoulders look wider, and decorations such as gathers, studs, punching, slits, pleats and tucks. The raglan sleeve design was classified into Yoke Raglan, Armhole Princess Raglan, Semi Raglan, Gathered Raglan, Pleats Raglan, Cowl Raglan, Origami Raglan, Circular Curved Raglan, Capes Raglan and Constructive Design Raglan and the patterns per design were presented. For creative and experimental clothing by the analysis of the features of raglan sleeve structure, a variety of configuration methods need to be developed and implemented. The analysis results of this study will contribute to the development of the fashion industry through small quantity batch production pursuing unique styles as the basis for further study on the configuration methods of raglan sleeves. This study will be used in various ways as education materials on sleeve patterns in the educational field. Through the analysis of sleeve patterns, this study tries to provide basic data for planning the design of raglan sleeves and helping to diversify the ladies' apparel market in the future.

  • PDF