• Title/Summary/Keyword: Pumping system

Search Result 655, Processing Time 0.028 seconds

A comparative study on the performance of pumping station by changing measurement methods and operational logic (빗물펌프장 계측방식과 운영 로직에 따른 거동 비교 연구)

  • Lee, Gunyoung;Beak, Hyunwook;Ryu, Jaena;Kim, Taehyoung;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.915-925
    • /
    • 2012
  • On-off control performance of target pumping station was experimented by changing measurement methods for storage level or inflow and operating logic for control system setting. Four scenarios with different measurement methods and operational logic were examined in the Matlab/Simulink environment. Controller's on-off control repetition that was frequent before has been reduced and more effective and stable system operation was found to be possible with the scenarios. Moreover, defensive operation enforced prevention of floods by changing measurement methods enabled economic operation that made an utmost use of storage volumes.

Design of the vacuum pumping system for the KSTAR NBI device (KSTAR 중성빔 입사(NBI) 장치 배기계통 설계)

  • 오병훈;인상렬;조용섭;김계령;최병호
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.548-555
    • /
    • 1999
  • The NBI (Neutral BGeam Injection) System for the Korea Superconducting Tokamak Advanced Research (KSTAR) is composed of ion sources, neutralizers, bending magnets, ion dumps, and calorimeter. The vacuum chamber, in which all of the beam line components are enclosed, is composed of differential pumping system for the effective transfer of the neutral beams. The needed pumping speeds of each of the divided vacuum chamber and the optimized gas flow rate ot the neutralizer were calculated with the help of the particle balance equations. The minimum gas flow rate to the ion sources for producing needed beam current (120kV, 65A, 78MW), the pressure distributions in the vacuum chamber for minimizing re-ionization loss, and the beam loss rate on the beam line components were used as the input in the calculation. Also the scenario for short pulse operation was determined by analysing the time dependent equations. It showed that beam extraction during less than 0.5 sec could be made only with TMP.

  • PDF

A Study on the Operating Characteristics of Variable Speed Pump for In-Line Booster Pumping Station (직결식 변속펌프의 운전 방안에 대한 연구)

  • Park, Jong-Moon;Choi, Sung-Il;Roh, Hyung-Woon;Suh, Sang-Ho;Kim, Sang-Gyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.191-196
    • /
    • 2001
  • In the systems with largely pipe head loss, variable speed pumps are generally used because substantial energy saving can be expected from such systems by controlling pump speed and also they offer simpler maintenance and operational ease even in conditions where abrupt changes In flow rate and head can occur. The invertor or the fluid coupling system are mainly adopted to control the rotating speed. In this paper, operating conditions at Migum pressing pump station(5 stage), where the fluid coupling system was the first installed for KOWACO, are investigated and analysed so that information thus gained can be usefully employed in the efficient operation of variable speed pump in new installations of in-line booster pumping station.

  • PDF

Characteristics of a Flow Control Valve for a Submerged Cargo Pumping System (서브머지드 카고 펌프 시스템용 유량제어밸브의 특성)

  • Lee, I.Y.;Choi, S.R.;Lee, D.R.;Park, H.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.2
    • /
    • pp.7-13
    • /
    • 2009
  • This study specifies the flow control characteristics of a flow control valve(FCV) in a submerged cargo pumping system through experiments and simulations. In the experiments, the functions of the major components of the FCV in relation to the FCV's flow characteristics are presented clearly. Through the simulations, it is shown that the simulation program suggested in this study can be utilized for the design of the FCV.

  • PDF

A new polydimethylsiloxane microfluidic system integrated with micropump and microvalve (마이크로 펌프와 밸브가 집적된 polydimethylsiloxane microfluidic system)

  • Yoo, Jong-Chul;Moon, Min-Chul;Kim, Ju-Ho;Kang, C.J.;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2374-2376
    • /
    • 2005
  • 본 연구에서 제안한 microfluidic system은 열공압 방식으로 구동되고 indium tin oxide (ITO) 및 polydimethylsiloxane(PDMS)로 제작하여 공정이 간단하고 비용이 저렴하여 일회용으로 사용이 가능하며 투명한 장점을 갖는다. 또한 마이크로 펌프는 인-채널 구조의 마이크로 밸브와 동일한 공정으로 제작하였다. 제안된 마이크로 펌프는 인-채널 구조의 마이크로 밸브와 같은 기판 위에 쉽게 집적하여 제작할 수 있다. 마이크로 펌프의 pumping rate는 인가 펄스 전압의 주파수와 duty비를 변화시켜 최적화하였다. Duty 비가 1%이고 주파수가 2 Hz일 때 최대 pumping rate를 보였으며 이때 pumping rate는 26.18nl/min이였다. 마이크로 밸브는 ITO 히터에 전력을 인가함으로서 유량의 on/off 제어가 잘 됨을 확인할 수 있었고 유체를 closing하기 위해 필요한 전력은 100mW이다.

  • PDF

Waterhammer for the In-Line Intake Pumping Station with Air Chamber (에어챔버가 설치된 인라인 취수펌프장에서 수격현상)

  • Kim, Kyung-Yup;Ahn, Cheoul-Hong;Kim, Bum-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.70-76
    • /
    • 2012
  • Recently, because people are taking a great interest in the water supply system and the related facilities are getting larger, the surge suppression is very important problem. The waterhammer occurs when the pumps are started or stoped for operation or tripped due to the power failure. As the waterhammer problems as a result of the pump power failure were very serious, these situations were carefully investigated. Accordingly, we carried out both numerical simulations and field tests to confirm the safety of Juam intake pumping station in which had the in-line pumps. In this paper, it was reviewed that the water supply system has the reliability on the pressure surge, in case the air chambers were installed at both the inlet and the oulet of the in-line pumping station. From the numerical simulations, we found that negative pressure occurred at the inlet disappeared and high pressure occurred at the outlet reduced due to the air chambers. And these results of numerical simulations verified by the field tests. The field tests carried out in case of normal start, normal stop, one and two of pumps emergency stop. By results of simulations and field tests, we are sure that Juam intake pumping station in which have the air chambers is safe for the waterhammer. In addition, we suggested the operation methods of facilities for safe maintenance of the pumping station.

Prediction of Pumping Friction Resistance Coefficient in Pipe Influenced by Concrete Rheology Properties (콘크리트의 레올로지 특성에 따른 펌핑관내 마찰저항계수의 예측에 관한 연구)

  • Kim, Hyung-Rae;Cho, Ho-Kyoo;Kim, Jung-Chul;Lee, Kewn-Chu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.118-126
    • /
    • 2014
  • The establishment of the technology for evaluating friction resistance and pipe pressure and the relation of the fluid characteristics and pumpability of concrete is essential for concrete pumping performance for the rapid construction of super-tall buildings. In this study, a quantitative evaluation of concrete fluid characteristics and surface friction resistance was performed, applying different concrete mix proportions and pumping conditions. To achieve this, we developed a temporary horizontal pumping evaluation system to measure pipe pressure and surface friction characteristics, and performed an experiment to investigate the relations between concrete rheology characteristics and friction resistance in pipe. The experiment found that in terms of the rheology characteristics, plastic viscosity was reduced remarkably after pumping. As well, high regression between the surface friction and pressure gradient was confirmed. This means that it is possible to evaluate the friction resistance between concrete and pipe by means of a pumping system that includes a frictional resistance testing pipe. In addition, high regression between the plastic viscosity of concrete after pumping and friction resistance coefficient was confirmed. Finally, it is considered that pumping pressure can be predicted using the friction resistance coefficient derived in this study, and it has high regression.

An Experimental Study on the Ignition Probability and Combustion Flame Characteristics of Spark-Ignited Direct-Injection CNG (스파크점화직분식 CNG의 점화성 및 연소화염 특성에 대한 연구)

  • Hwang, Seongill;Chung, Sungsik;Yeom, Jeongkuk;Jeon, Byongyeul;Lee, Jinhyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2016
  • For the SI engines, at only full load, the pumping loss has a negligible effect, while at part load conditions, the pumping loss increases. To avoid the pumping loss, the spark-ignited engines are designed to inject gasoline directly into the combustion chamber. In the spark-ignited direct-injection engines, ignition probability is important for successful combustion and the flame propagation characteristics are also different from that of pre-mixed combustion. In this paper, a visualization experiment system is designed to study the ignition probability and combustion flame characteristics of spark-ignited direct-injection CNG fuel. The visualization system is composed of a combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. It is found that ambient pressure, ambient temperature and ambient air flow velocity are important parameters which affect the ignition probability of CNG-air mixture and flame propagation characteristics and the injected CNG fuel can be ignited directly by a spark-plug under proper ambient conditions. For all cases of successful ignition, the flame propagation images were digitally recorded with an intensified CCD camera and the flame propagation characteristics were analyzed.

Hydrogen Pumping Characteristics of a Scroll Pump (스크롤 펌프의 수소 배기특성)

  • In S. R.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.14-23
    • /
    • 2006
  • The scroll pump is widely used in ultra clean vacuum systems. However, there is no commonly available information on the hydrogen pumping characteristics of this pump, which creates a difficulty in determining whether the scroll pump can be used or not in a fusion experiment system where hydrogen ,is the main working gas. In this paper the experimental setup, measurement procedures, experimental results, and discussions on the pumping speed, the maximum compression ratio and the back-streaming properties of the scroll pump, especially for the hydrogen gas, are reported.

A Study on the Flow Characteristic for Changing of Flow Region of the Motor Inserted Oil Pump (내부 유로 변경에 따른 전동기 일체형 유압펌프 내부의 유동특성에 관한 연구)

  • Choi, Y.H.;Lee, T.K.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.26-31
    • /
    • 2012
  • A numerical study has been carried out to investigate the heat and mass transfer of an oil pumping system with a variable shape of the housing using the CFD method. Especially, the electric motor and the pump combined together, accomplishes a research about the oil supplying system. In this study, the temperature and velocity distribution of the oil pumping system by varying the flow rate of supplying oil have been investigated. The temperature changes with each five conditions(flow rate of supply oil : 2, 4, 8, 12, and 16 liter/min) have also been studied. The numerical results show that the exhaust temperature decreases as the flow rate of the supplying oil increases. It also reveals that the temperatures change differently with the housing shape.