• Title/Summary/Keyword: Pumping station

Search Result 133, Processing Time 0.032 seconds

A Numerical Study for Optimum Design of Dust Separator Screen Based on Coanda Effect (코안다효과를 이용한 제진기 스크린의 최적설계를 위한 수치적 연구)

  • Yun, Seong-Min;Kim, Yong-Sun;Shin, Hee-Jea;Ko, Sang-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.177-185
    • /
    • 2018
  • There is a need to study dust separator screens with good drainage efficiency while effectively filtering suspended solids and other contaminants entering the intake pumping station, the drainage pumping station and the mediation pumping station, the cooling water inlet of the power plant, and the like. In this paper, Numerical studies were conducted for the optimal design of the dust separator screen using the Coanda effect. The shape of the dust separator screen is important, such as the right curvature radius $R_1$ at the top of the dust separator screen and the left curvature radius $R_2$ at the top, h is the height difference and shape between the screen and the accelerating plate, and ${\theta}$ is the inclination angle of the screen. A total of 4 shape factors were set and the effects of Coanda and drainage performance of each element were compared and analyzed, the optimum length and size of each shape element were derived by classifying the shape elements into direct and indirect influences. Finally, it was possible to effectively filter foreign matter by narrowing the screen spacing, and the drainage performance was analyzed and optimized through numerical studies of dust separator screen.

Actual Uses and Water Qualities of Irrigation Water from Agricultural Reservoir and Pumping Station (관개용 저수지 및 양수장의 농업용수 공급량 및 수질)

  • Choi, Jin-Kyu;Han, Kang-Wan;Koo, Ja-Woong;Son, Jae-Gwon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.205-212
    • /
    • 2001
  • Joongpyong reservoir and Guiseok pumping station were selected as the hydrologic monitoring sites for the water level gauging and amount of irrigation water use, and water samples were taken and analysed periodically. Rating curves were derived from the relations water level and discharge data, and water supply through culvert of the Joongpyong reservoir was $593,200m^3$ and irrigation water $2,913,000m^3$ from the Guiseok pumping station. Changes of stream water qualities such as water temperature, pH, EC, total nitrogen, total phosphorus were examined, pH was 6.98.1 lower than the criteria of agricultural water 6.0~8.5, total nitrogen $0.9{\sim}4.5mg\;L^{-1}$, total phosphorus $0.008{\sim}0.036mg\;L^{-1}$. The results from this study could be offered as a basic data for the irrigation plan and water quality management.

  • PDF

Estimation of the Change in Ground Water Level using Regression Analysis (회귀분석을 이용한 지하수 수위 변화 추정)

  • Kim, Sang-Min;Ahn, Byeong-Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.51-58
    • /
    • 2011
  • The objective of this study is to identify whether or not the ground water level is decreasing. We suggest a method of estimating the change in groundwater level using newly developed groundwater pumping station data. The Goseong area located in Gyeongnam province was selected considering three factors. First, this area demands relatively large amount of irrigation water because most of the land is used as a paddy field and the proportion of the paddy field within total arable land is increasing. Second, groundwater level data in nearby area are available since these are monitored by Water Management Information System (WAMIS). Third, many groundwater pumping stations have been developed in this area in order to overcome droughts thus detail information for pumping stations are available. Regression results indicate groundwater level has been decreased for over 20 years. This decreasing trend is due to the shortage of surface irrigation water which was caused by the decrease in rainfall.

A Safety Evaluation of Detention Reservoirs at Seoul by New Pumping Criteria (우수배제 펌프의 조작기준에 따른 서울시 유수지의 안전검토)

  • Lee, Won Hwan;Park, Sang Deog;Shim, Jae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.141-150
    • /
    • 1992
  • Rapid change of urban area become a serious cause of disaster in existing drainage systems, and the practical alternatives in that situations are needed. The purpose of this study is to evaluate safety, one of drainage systems, detention reservoir and pumping station by new pumping criteria. New drainage pumping criteria, divided into two parts (rising limb and falling limb), which used in reservoir routing, shows more efficient flood prevention effect than existing criteria (based on the reservoir water level). To obtain the optimal range of flood prevention, sensitivity analysis of each inflow v.s. pumping capacity is tested. As a results, using 10 year design rainfall, 60% of detention reservoir and drainage pumping stations in Seoul are safe. In this results, there must be a fundamental and powerful counterplans to prevent inland flooding in Seoul metropolitan area.

  • PDF

A study on the estimation of river water intake using the operating time of the pumping station (양수장의 가동시간을 이용한 하천수 취수량 산정방안 연구)

  • Baek, Jongseok;Kim, Chiyoung;Cha, Jun-Ho;Song, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • Water management agencies under the Ministry of Environment produce and accumulate qualified basic data for major rivers. However, the integrated management of the river water has been weak since the artificial water circulation process, such as the intaking and drainage of agricultural water, has not been examined in the basin, which includes many agricultural land. In this study, a study was conducted on how the power usage method (operating time method) based on the running time can be applied and improved among indirect flow rate measurement methods used to investigate flow rates collected by the riverside for agricultural water purposes, and thus the resultant data of high reliability can be obtained at low cost. The operation time method is suitable for small-scale water pumping stations where it is difficult to secure real-time power supply data. The reliability of the data was verified through the correlation analysis with the actual flow rate, and it was found that the flow rate calculated by the operation time method reflecting the level of the stream to which the inlet of the pumping station is connected can be reasonably matched with the actual flow rate. In addition, it was confirmed that the investment cost at the time of initial installation of the facility was highly efficient by generating qualified flow data at low cost through comparison with direct flow rate measurement methods. If flow data is secured by applying the operation time method to large and small water farms located along the riverside, it is expected that more quantitative and integrated stream water management will be possible.

Study on Design Capacity of Stormwater Pipe and Pumping Station considering Peak Rainfall Intensity (첨두강우강도를 고려한 우수관로 및 빗물펌프장의 설계용량 검토)

  • Chung, Gunhui;Sim, Kyu Bum;Kim, Eung Seok
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.777-787
    • /
    • 2014
  • Stormwater pipe systems are most commonly used to discharge rainwater from the urban catchment covered by the impervious area. To design stormwater pipe and rainwater pumping station, frequency analysis is implemented using historical rainfall and the design rainfall is timely distributed using theoretical shape such as Huff distribution. This method cannot consider the rainfall intensity variation caused by climate change which is type of uncertainty. Therefore, in this study, runoff from Gasan1 stormwater pumping stations catchment is calculated using design rainfall distributed by the 2nd quartile distribution method and the historical rainfall events. From the analysis, the nodal flooding in the urban catchment is likely caused by the high peak rainfall event rather than the large amount of rainfall. The linear regression analysis is implemented. As a result, when several storms have the same amount of rainfall, the nodal flooding in the stormwater pipe systems could be caused by the high peak of storm events. Since as the storm duration become short, the peak rainfall become high, the nodal flooding likely become severe with the short storm duration. The uncertainty in the peak data of design rainfall is analyzed and this uncertainty has to be consider in the stormwater pipe design process.

Investigation and Complementary Measures Establishment for Flood on Tidal Reclaimed Paddy Fields (간척지 논 침수 원인 조사와 방재 대책 수립)

  • Jeong, Ju-Hong;Yoon, Kwang-Sik;Choi, Soo-Myung;Yoon,, Suk-Gun;Go, Young-Bae;Kim, Young-Taek
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.105-114
    • /
    • 2010
  • Tidal land reclamation provided water resources and land for agriculture and contributed stable crop production. However, climate change by global warming disrupts the hydrologic circulatory system of the earth resulting in sea level rise and more frequent flood for reclaimed arable land. Recently, Suyu reclaimed paddy field in Jindo-gun experienced prolonged inundation after heavy rainfall and there is a growing risk of flood damage. Onsite survey and flood analysis using GATE_Pro model of Korea Rural Corporation were conducted to investigate causes of flooding. To perform the analysis, input data such as inflow hydrograph, the lowest elevation of paddy field, neap tide level, management level of Gunnae estuary lake at the time of the flood were collected. Flood analysis confirmed that current drainage facilities are not enough to prevent 20year return period flood. The result of analysis showed flooding more than 24hours. Therefore, flood mitigation alternatives such as sluice gate expansion, installation drainage pumping station, refill paddy land, and catch canal were studied. Replacing drainage culvert of Suyu dike to sluice gate and installing drainage pumping station at the Gunne lake were identified as an effective flood control measures. Furthermore, TM/TC (SCADA) system and expert for gate management are required for the better management of drainage for estuary dam and flood mitigation.

  • PDF

Water and Nutrient Balance of Paddy Field Irrigated from a Pumping Station during Cropping Period (양수장 지구 광역논으로부터 영농기간 영양물질의 유출 및 물질수지)

  • Yoon, Kwang-Sik;Han, Kuk-Heon;Cho, Jae-Young;Choi, Chang-Hyun;Son, Jae-Gwon;Choi, Jin-Kyu
    • Journal of Korean Society of Rural Planning
    • /
    • v.8 no.1 s.15
    • /
    • pp.15-25
    • /
    • 2002
  • The study was carried out to investigate the water balance and losses of nutrients from paddy fields during cropping period. The size of paddy fields was 95 ha and the fields were irrigated from a pumping station. The runoff loading was the highest in June because of the high concentrations of nutrients due to applied fertilizer, When the runoff Bosses of nutrients were compared to applied chemical fertilizer, it was found that 39.1 % to 42.5 % of nitrogen lost via runoff while runoff losses of phosphorus account for 14.5 % to 17 % of the total applied amount during cropping period. When the ratio was calculated between nutrients losses by infiltration and the applied of chemical fertilizer, two year results showed 9.1% to 10.8% for nitrogen and 0.5% for phosphorus, respectively.