• Title/Summary/Keyword: Pumping station

Search Result 133, Processing Time 0.026 seconds

Characteristics of Concentration of Pollutants from Paddy Fields district with Pumping Station (양수장지구 구획논에서의 영양물질 농도특성)

  • Kim, Young-Joo;Son, Jae-Gwon;Koo, Ja-Woong;Song, Jae-Do;Choi, Jin-Kyu;Yoon, Kwang-Sik
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.546-551
    • /
    • 2005
  • This study was carried out to investigate characteristics of concentration of pollutants from paddy fields district with pumping station in Sumjin river basin. The size of paddy fields was 8.06 ha and the fields were irrigated from Nae-wol and Jum-chon pumping station. Total rainfall were 1,206.5 mm from June to December in 2004, and 922.0 mm from January to August in 2005. Total irrigation and drainage water were 1014.5 mm and 968.8 mm in 2004, 655.6 mm and 687.7 mm in 2005, respectively. The measured values of T-N of the irrigation water were ranged from 0.35 mg/L to 7.26 mg/L(average : 2.09 mg/L) and T-P were ranged 0.0486 mg/L to 0.4308 mg/L (average : 0.1583 mg/L). The values of T-N of drainage water were ranged from 0.30 mg/L to 20.31 mg/L(average : 2.99 mg/L) and T-P were ranged 0.1653 mg/L to 0.8847 mg/L (average : 0.3829 mg/L).

  • PDF

A Study of Non-point Source Reduction Efficiency by Constructed Wetland installed in Flood Pumping Station (빗물펌프장에 설치된 인공습지의 비점오염원 저감효율 연구)

  • Chun, Suk-Young;Kim, Ji-Tae;Lee, Il-Kook;Chang, Soon-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • The aim of this study was evaluated the effects of total rainfall, rainfall intensity and antecedent dry days and identify the correlation analysis with the EMC removal efficiency, in order to provide an understanding of the operation and maintenance factors of constructed wetland in flood pumping station. This study was conducted total of 20 monitoring in a catchment(326.2 ha) of constructed wetland in Ga-un flood pumping station located at the downstream of the Wang-suk stream. The determined EMC removal efficiencies were $36.04{\pm}9.45%$ for BOD, $38.50{\pm}13.50%$ for $COD_{Mn}$, $34.34{\pm}13.05%$ for TN and $34.22{\pm}14.27%$ for TP, respectively. These results showed that the pollutants concentration and EMC were reduced while passing through the constructed wetland. In the correlation analysis, the highly correlations with EMC removal efficiency of BOD and $COD_{Mn}$ were observed for total rainfall and rainfall intensity (P<0.05). However, the correlations were not found with TN and TP for rainfall variables.

Runoff simulation for operation of small urban storm water pumping station under heavy storm rainfall conditions (집중호우 시 도시 소유역 배수펌프장 운영을 위한 강우유출모의)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Sung-Geun;Lee, Chang-No;Kim, Goo-Hyeon
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2006
  • In this study, runoff simulation was carried out in order to derive operational improvement of small urban storm water pumping station under heavy storm rainfall conditions. The flood inflow hydrograph of Guri city heavy storm in July, 2001 was successfully simulated by HEC-HMS, a GIS-based runoff simulation model. For the runoff simulation, ArcView, as an effective GIS tool, was used to provide input data of the model such as land use data, soil distribution data and SCS runoff curve number.

  • PDF

Development of Alarm System Using Fault Tree Analysis for Pumping Station and Reservoir of Waterworks (Fault Tree 분석에 의한 상수도 가압장과 배수지의 경보시스템 구축)

  • Ahn, Yong-Po;Song, Moo-Geun;Lee, Dong-Ik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.847-859
    • /
    • 2011
  • This paper presents an alarm system for the integrated monitoring and control station of waterworks in Daegu City. An alarm system informs the operator or other responsible individuals about the abnormality in the process so that an appropriate action can be taken. In practice, operators receive far more false and nuisance alarms than valid and useful alarms. Too many false and nuisance alarms can distract the operator from operating the plant, and thus critical alarms may be ignored. This problem can lead to the point that the operator no longer trusts the alarms or even shuts down the whole monitoring system. This paper proposes an efficient method to reduce false and nuisance alarms by prioritizing every fault using the Fault Tree Analysis (FTA) technique. The effectiveness of the proposed method is evaluated with a set of computer simulation under various faulty conditions.

A Development of Intelligent Pumping Station Operation System Using Deep Reinforcement Learning (심층 강화학습을 이용한 지능형 빗물펌프장 운영 시스템 개발)

  • Kang, Seung-Ho;Park, Jung-Hyun;Joo, Jin-Gul
    • Convergence Security Journal
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • The rainwater pumping station located near a river prevents river overflow and flood damages by operating several pumps according to the appropriate rules against the reservoir. At the present time, almost all of rainwater pumping stations employ pumping policies based on the simple rules depending only on the water level of reservoir. The ongoing climate change caused by global warming makes it increasingly difficult to predict the amount of rainfall. Therefore, it is difficult to cope with changes in the water level of reservoirs through the simple pumping policy. In this paper, we propose a pump operating method based on deep reinforcement learning which has the ability to select the appropriate number of operating pumps to keep the reservoir to the proper water level using the information of the amount of rainfall, the water volume and current water level of the reservoir. In order to evaluate the performance of the proposed method, the simulations are performed using Storm Water Management Model(SWMM), a dynamic rainfall-runoff-routing simulation model, and the performance of the method is compared with that of a pumping policy being in use in the field.

Assessing Vulnerability to Agricultural Drought of Pumping Stations for Preparing Climate Change (기후변화 대응을 위한 양수장의 농업가뭄 취약성 실태 평가)

  • Jang, Min-Won;Kim, Soo-Jin;Bae, Seung-Jong;Yoo, Seunghwan;Jung, Kyunghun;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.31-40
    • /
    • 2019
  • In order to implement practical alternatives to proactively cope with the agricultural drought, the potential vulnerability of irrigation pumping stations to agricultural drought was quantitatively evaluated. Data for the 124 pumping stations which are correlatable to the three proxy variables, i.e. exposure, sensitivity, and adaptive capacity was collected by the Korea Rural Community Corporation, and then standardized considering distribution of each data set. Finally, the vulnerability index was calculated by multiplying the weights determined by the expert survey. The results showed that the vulnerability index ranged from 0.709 to 0.331 and the most vulnerable pumping stations such as Judam, Wongoo and Jinahn were mostly located in Gyeongbuk province likely because of the climatological characteristics with high temperature and low rainfall around this area. In addition, it was found that the adaptive capacity was a dominant factor comparing to exposure or sensitivity proxy variables in contributing to the vulnerability. It is therefore recommended that more practical alternatives should be employed to effectively reduce the vulnerability of an individual pumping station to agricultural drought. Furthermore, the corresponding data related to adaptive capacity should be systematically organized and managed at a field level to design reliable adaptation strategies.

Application of the Fuzzy Models for the Efficient Operation of Pumping Station (배수펌프장의 효율적인 운영을 위한 퍼지모형의 적용)

  • Kim, Yun-Tae;Shim, Jae-Hyun;Chung, Jae-Hak;Ahn, Jae-Chan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.3 s.14
    • /
    • pp.51-60
    • /
    • 2004
  • Urban flood damage has been caused by drainage deficiency. One of the methods to solve this problem is to construct detention basin and Pumping station and to pump out the water to the river. However, because of rapid urbanization, the capacity of drainage pipelines is sometimes not sufficient enough during the rainy season. Therefore, even though we have enough pumping stations, the inflow of surface water never reaches to the detention area, causing floods in urban area. This research is to find improvement of urban drainage system, estimating drainage pipeline risk. Also, eight models for a computer program were developed for practical use. The models were verified changing precipitation duration, intensity, design period, time distribution model, and etc. This verification was processed focusing that the model can regulate the water level in the detention basin and minimize the effect downstream. As a result Fuzzy models were found to be efficient to lower the water level in detention basin, and decreased about 8 cm in water level of downstream.

A Study on the Pumping and Drainage Systems of the Floodplain at Daedong-myeon, Gimhae-si (김해시 대동면 범람원 지역의 양·배수 체계에 관한 연구)

  • HAN, Su-gyeong;SON, ILL
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • The catch canal for a natural drainage, the excavation of tunnel for a stable irrigation, the artifical channelization of yazoo stream, many kinds of the pumping and drainage systems are found around Daedong-myeon, Gimhae-si. It could be confirmed that the deveolpment, maintenance and management of those facilities in the floodplain are mainly controlled by the geomorphological conditions. In case of Unha-chon, especially, the water can always be supplied only by openning the gate of irrigation tunnel and the Woldang pumping station as the largest pumping station in this area can supply water to Unha-chon area directly from the main river, Nakdong-gang. Because the Gamnae-chon which was an upper reach of the Unha-chon and is now connected to the Nakdong-gang through the Deoksan catch canal, the damage of flood and the burden of drainage are mitigated at the lower area of the Unha-chon.