• Title/Summary/Keyword: Pumping irrigation

Search Result 90, Processing Time 0.03 seconds

A Status of Agricultural Water Quality and Improvable Countermeasure in Korea (우리나라 농업용수 수질오염 현황과 개선대책)

  • Baeg, Cheong-Oh;Kang, Sang-Gu;Lee, Kwang-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.506-519
    • /
    • 1996
  • The water quality in the rural areas is degrading due to a variety of causes such as the increase of the urban sewage and industrial wastes, the disposal of solid wastes, the growth of livestock waste, the growth of leisure facilities, the establishment of agricultural industry estates and etc. The water pollutants are scarce while the effluent is increasing from wide scattered sources. The technology specifically designed for the rural wastes water treatment plant needs to be implemented with improvement of agricultural water quality. 1. An integrated management measures against water pollution sources. The prevention of water pollution is the best measures in the environmental pollution. Hence, the most effective measures needs to be against the sources. Small-scale water treatment plants needs to be constructed in each village in the rural areas. As for the industrial effluent, the effluent discharge needs to be strictly monitored. Government subsidy for the establishment of treatment plant for livestock wastes is necessary. 2. The establishment of national-wide network for agricultural water quality. The network for agricultural water quality have been operated to conserve the agricultural water quality, and to develop management policies by the assessment of water pollution in the rural areas. The results of agricultural water quality network indicates that the water quality is degrading not only around urban areas but also in the distant rural areas, and the water quality at the pumping stations and weirs is worse than that of reservoirs. 3. The legal, systematic, and technical approaches for the agricultural water quality management. The actions currently implemented for the improvement of agricultural water quality involve temporary measures such as the improvement of irrigation facilities. These contingency measures are not effective in the long-term, and sometimes bring secondary pollution. Therefore, integrated measures covering the whole water environment such as the flow, quality, river morphology, aquatic ecosystem, and the surrounding environment, need be invented and implemented. Besides, the legal, systematic, and technical frameworks for the management are not fully established so far. The technology for the treatment of rural water pollution should be refined afterwards, and the research for the development of rural waste water treatment plant should be carried out.

  • PDF

The Effect of Pump Intake Leaning Angle and Flow Rate on the Internal Flow of Pump Sump

  • Lee, Youngbum;Kim, Kyung-Yup;Chen, Zhenmu;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.74-80
    • /
    • 2017
  • Pump sump system or pumping stations are built to draw water from a source such as river and used for irrigation, thermal power plants etc. If pump sump is improperly shaped or sized, air entraining vortices or submerged vortices may develop. This may greatly affect pump operation if vortices grow to an appreciable extent. Moreover, the noise and vibration of the pump can be increased by the remaining of vortices in the pump flow passage. Therefore, the vortices in the pump flow passage have to be reduced for a good performance of pump sump station. In this study, the effect of pump intake leaning angle and flow rate on the pump sump internal flow has been investigated. There are three cases with different leaning angle. Moreover, a pipe type with elbow also has been studied. The flow rate with three classes of air entraining vortices has been examined and investigated by decreasing the water level. The result shows that the air entraining vortices easily occurs at the pump intake with large leaning angle. Moreover, the elbow type of the pump intake easily occurs air entraining vortices at the high flow rate (or velocity) in comparison to other pump intake type.

The Use of geographic information system for planning rural water rescources systems (농어촌지역의 수자원시스템 계획을 위한 지리정보 시스템의 활용)

  • 정하우;이정재;이남호;김성준;최진용
    • Spatial Information Research
    • /
    • v.3 no.1
    • /
    • pp.39-46
    • /
    • 1995
  • Rural water resources systems may be largely constituted by two parts. One is rural water supply systems such as reservoirs, wells, pumping stations. The other is rural water demand systems which include municipal water, irrigation water, industrial water, livestocks water, inland fisheries water and envir¬onmental water in rural areas. planning to develop rural water resources systems is a very hard task because of their complicated factors and the large number of spatial data to investigate and manipulate. A Geographic Information SystemCGIS) will be a powerful and efficient tool to handle the spatial data and to plan the land use. All data can be efficiently maintained and easily updated. This paper refers to the construction of a GIS for planning rural water resources systems applied to Kokseong County, Cheonnam Province, Republic of Korea. The Geographic Informa¬tion was constituted by 4 layers of base map and 11 layers of thematic map.

  • PDF

Development of Database Management System for Agriculture Facilities Using Geographic Information System (GIS를 이용한 농업시설물 데이터베이스관리시스템 개발)

  • An, Won-Tae;Choi, Seok-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.570-579
    • /
    • 2021
  • The environments in current farming and fishing communities have been exacerbated by the shortage of personnel caused by aging, the deficiency of equipment, and the decrease in produce prices. To help solve these issues, this study examined the history, such as inspections, failures, and repairs, by constructing a database for underground water wells, pumping stations, and irrigation, which are critical for management among agriculture production infrastructures. In particular, in the case of underground water wells, their optimal locations were determined using spatial information, such as a geological map of water resources, a water vein map, and underwater depth, because indiscreet installations and an absence of spatial information resulted in economic losses and environmental pollution. Therefore, this study could efficiently manage many facilities scattered in rural areas by developing a system. An analysis of the status of 14 underground water wells using spatial information showed that the location information at six points was specified incorrectly. On the other hand, a site investigation showed that the water vein map analysis at one point was inaccurate.

Irrigation efficiency on agricultural water supply of pumping station using SWMM (SWMM 모델을 이용한 양수장 농업용수 공급시나리오별 관개효율 분석)

  • Shin, Ji-Hyeon;Nam, Won-Ho;Hwang, Su-Jung;Jeon, Min-Gi;Bang, Na-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.186-186
    • /
    • 2021
  • 농업가뭄은 관측과 예측이 용이하지 않고 정량적으로 나타내기도 어려운 자연현상이며, 우리나라의 경우 농업용수 이용량이 많고, 농업용 저수지, 양수장 등 이용형태가 다양하므로 강수 부족으로 농업가뭄이 발생한다고 해도 실제로 농업현장에서 느끼는 가뭄은 시·공간적으로 다를 수 있다. 농업용수 공급은 수문관리원이 경험을 통한 수문관리를 해오고 있으며, 그 방법 또한 정확한 계측이 아닌 경험으로 이루어지고 있어 공급량 관리가 정성적이고 제한적인 한계가 발생한다. 따라서, 수원공에서 수로조직 및 포장에 이르기까지의 용수공급 모의를 통해 농업용수 공급의 합리적인 분배, 말단 수로 및 포장까지 안정적인 용수공급을 위한 물공급 및 분배 효율 분석이 필요하다. 또한, 기존 농업용 수리시설물의 물 공급 능력 평가 및 들녘단위의 평야부 물 부족지역과 과잉공급된 지역의 정확한 파악을 위한 연구가 필요하다. 따라서, 농업용 저수지 및 양수장의 주목적인 관할 수혜구역에 대한 농업용수공급 안정성 및 관개효율을 평가하고자 한다. 본 연구에서는 상주지역의 덕가 저수지를 대상으로 양수장 위치에 따라 가상의 3가지 용수공급 시나리오를 구성하고 각 시나리오별 수로 네트워크 모의를 통해 평야부의 공급량 및 관개효율을 비교 분석하고자 한다. 2017년부터 2019년까지 농업기반시설관리시스템 (Rural Infrastructure Management System, RIMS) 저수율 데이터를 구축하였고, 유체의 흐름에 대한 수리적 특성을 모의할 수 있는 SWMM(Storm Water Management Model) 모형을 통해 관개기 동안의 농업용수 분배 모의와 공급효율을 분석하고자 한다.

  • PDF

Effluent Characteristics of Nonpoint Source Pollutant Loads at Paddy Fields during Cropping Period (영농기 광역논으로부터 비점오염물질 유출 특성)

  • Han, Kuk-Heon;Kim, Jin-Ho;Yoon, Kwang-Sik;Cho, Jae-Young;Kim, Won-Il;Yun, Sun-Gang;Lee, Jeong-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.18-24
    • /
    • 2007
  • Paddy fields are apparently nonpoint source pollution and influence water environment. In order to improve water quality in rivers or lakes, to low nutrient load from paddy fields are required. To establish comprehensive plan to control agricultural non-point source pollution, it is imperative to get a quantitative evaluation on pollutants and pollution load from paddy fields. A field monitoring study was carried out to investigate the water balance and losses of nutrients from fields in Sumjin river basin. The size of paddy fields was 115 ha and the fields were irrigated from a pumping station. The observed total nitrogen loads from paddy fields were larger than those of the unit loads determined by Ministry of Environment data (MOE). It is because the nitrogen fertilization level at the studied field was higher than the recommended rate and the high irrigation and subsequent drainage amount. On the contrary, total phosphorus loads were less than those addressed by MOE since phosphorus fertilization level was lower than that of standard level. Therefore, it was found that fertilization, irrigation, and drainage management are key factors to determine nutrient losses from paddy fields. When the runoff losses of nutrients were compared to applied chemical fertilizer, it was found that 42 to 60% of nitrogen lost via runoff while runoff losses of phosphorus account for 1.3 to 7.6% of the total applied amount during the entire year.

Assessment of Agricultural Water Supply Capacity Using MODSIM-DSS Coupled with SWAT (SWAT과 MODSIM-DSS 모형을 연계한 금강유역의 농업용수 공급능력 평가)

  • Ahn, So Ra;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.507-519
    • /
    • 2013
  • This study is to evaluate agricultural water supply capacity in Geum river basin (9,865 $km^2$), one of the 5 big river basin of South Korea using MODSIM-DSS (MODified SIMyld-Decision Support System) model. The model is a generalized river basin decision support system and network flow model developed at Colorado State University designed specifically to meet the growing demands and pressures on river basin management. The model was established by dividing the basin into 14 subbasins and the irrigation facilities viz. agricultural reservoirs, pumping stations, diversions, culverts and groundwater wells were grouped and networked within each subbasin and networked between subbasins including municipal and industrial water supplies. To prepare the inflows to agricultural reservoirs and multipurpose dams, the Soil and Water Assessment Tool (SWAT) was calibrated using 6 years (2005-2010) observed dam inflow and storage data. By MODSIM run for 8 years from 2004 to 2011, the agricultural water shortage had occurred during the drought years of 2006, 2008, and 2009. The agricultural water shortage could be calculated as 282 $10^6m^3$, 286 $10^6m^3$, and 329 $10^6m^3$ respectively.

Changes in Agricultural Irrigation Water Quality in Nam River (남강 농업용수의 시기별 수질변화)

  • Lee, Young-Han;Kim, Jong-Gyun;Lee, Han-Saeng;Cho, Dong-Jin;Cho, Ju-Sik;Shin, Yon-Kyo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.3
    • /
    • pp.259-263
    • /
    • 1997
  • To investigate chemical changes of agricultural water in Nam river used for the basic information. Samples were collected from seven sites along the Nam river and were analyzed for inorganic content from April to September in $1994{\sim}1995$. Average value of analyzed inorganic concentrations at seven sampling sites were pH 7.9, COD 7.3mg/l, $NO_3-N$ 1.2mg/l, $Na^+$ 6.2mg/l, $Cl^-$ 14.8mg/l, EC 0.13dS/m, $PO_4\;^{3-}$ 0.21mg/l, $K^+$ 2.6mg/l, $Ca^{2+}$ 10.8mg/l,$Mg^{2+}$ 2.9mg/l, $SO_4\;^{2-}$ 10.5mg/l, $Fe^{3+}$ and $Zn^{2+}$ 0.02mg/l. The monthly average value of COD, $NO_3-N$, $Na^+$ and $Cl^-$ showed highest peak in July $8.4{\sim}11.6$, $1.1{\sim}1.7$, $5.4{\sim}13.1$ $18.9{\sim}27.9mg/l$. The highest region of average COD, $NO_3-N$, $Na^+$ and $Cl^-$ were Weola pumping station, $8.8{\sim}11.3$, $1.6{\sim}2.4$, $9.0{\sim}10.2$ and $21.7{\sim}23.0mg/l.$ The ionic $copmposition({\Sigma}A/{\Sigma}C)$ : ratio between total equivalant of anions and canon) of Nam river was higher at Weola pumping station than other topography. The EC was positively correlated with $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$, $Cl^-$ and $SO_4\;^{2-}$.

  • PDF

Effect of Non-Agricultural Facilities on Water Quality and Contamination in Rural Area (농촌용수 수질관리를 위한 비농업시설의 영향 연구)

  • Lee, Byung-Sun;Um, Jae-Yeon;Kim, Yang-Bin;Woo, Nam-Chil;Nam, Kyoung-Phile;Lee, Jong-Min
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • This study was objected to identify the effect on water quality and contamination by non-agricultural facilities in 'A' reservoir watershed located in OO city, Kyounggi-do, Korea. Ground- and stream water samples showed (Na+K)-Cl, Ca(Cl, SO$_4$) and Ca-Cl type in an illegally discharging area of sewage and a densely industrial area indicating water contamination. Stream water of an illegally discharging area of sewage had high COD, T-N and T-P. In this area, direct incoming of sewage into stream water was induced ground water system by well pumping, and it made a progress of ground water contaminations with those components. Groundwater of a densely industrial area showed high concentrations of T-N, NO$_3$N. From a nitrogen isotope analysis, stream water of an illegally discharging area of sewage has ${\delta}^{15}N-NO_3$values of 0.7%0 was strongly affected by nitrogen originated from agrochemicals, and a densely industrial area of 19.7%0 from septic system. Ground- and stream water of a livestock fanning area were contaminated with NH$_3$-N and Mn, which was affected by intensive livestock facilities. SAR-conductivity plot indicates the water does not pose either alkalinity or salinity hazard for irrigation. COD, T-N, T-P, NO$3$-N, NH$_3$N and Mn concentrations from contaminated areas were diminished by mixing with 'A' reservoir water. There were no water contaminations in silver towns, vacationlands around reservoir and golf links. Consequently, it should be made a plan of systematic managements for past and- present possible contaminants and sewage systems in preventing water contamination by non-agricultural facilities.

Effects of Tile Drain on Physicochemical Properties and Crop Productivity of Soils under Newly Constructed Plastic Film House (신설 하우스 시설재배지의 파이프 암거배수 효과)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.154-162
    • /
    • 2003
  • This study was conducted to investigate the effects of tile drain on Physicochemical properties and crop productivity of soils under plastic film house for three years (1999 - 2001). Tiles (${\Phi}100mm$ PVC pipe) were established at 50-60 cm depth with 1 m, 2 m, and 3 m intervals in Gangseo silt loam soil under 2W-type plastic film house. Cropping system was a pumpkin-pumpkin in the first year, a cucumber-spinach-crown daisy-spinach-young radish in the second year, and a green red pepper-tomato-spinach in last year, with conventional fertilization and drip or furrow irrigation by groundwater pumping. Bulk density and soil hardness of plot with tile drain were lower than those of control (plot without tile drain). Soil water content was also lower in tile drain plot than in control regardless of soil depth, and decreased at narrower interval and longer distance from tile in the same plot, thus suggesting that water flow and density of tile drain plot was higher than those of control. Rhizosphere of spinach, a final crop of third year, was expanded more than 2 cm due probably to improvement of soil physical properties caused by tiles establishment. Electrical conductivity (EC) of topsoil decreased from $1.22dS\;m^{-1}$ to $0.82dS\;m^{-1}$ by tile drain system, and the extent of EC decrease was different with season: higher in spring and lower in summer and autumn. The $NO_{3^-}-N$ concentration in topsoil decreased, from $200mg\;kg^{-1}$ to $39mg\;kg^{-1}$. The effect of tile drain on crop yield varied with crops. Average crop productivity obtained in tile drain plot than that of control crop: 18.2% in 2 m interval, 14.2% in 3 m interval, but lower 0.2% in 1 m interval.