• 제목/요약/키워드: Pumping device

검색결과 88건 처리시간 0.029초

동작 전류에 의한 Magnetic fluid Linear Pump의 동특성 해석 (Analysis of the Driving Characteristics in the Magnetic Fluid Linear Pump by Operating Current)

  • 서강;박관수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.237-246
    • /
    • 2004
  • The advantages of the Magnetic Fluid Linear Pump(MFLP) is that this device could Pump the non-conductive. non-magnetic liquid such as Insulin or blood because of the segregation structure of the magnetic fluid and pumping liquid. In this device. the sequential currents are needed to Produce pumping forces so that Pumping Forces and Pumping speed mainly depend on the current Patterns. The excessive forces at Pumping moment could cause the medical shock, and weak forces at intermediate moment could cause the back flow or the pumping liquid. So the ripples of the pumping forces need to be reduced for the medical application. In this research, the driving characteristics in the MFLP by operating current is analysed. The change of magnetic fluid surface according to the driving currents could be obtained be magneto-hydrodynamic analysis so that Pumping fortes could be computed by integration of the surface moving to the pumping direction at each moment. The actual MFLP with 13mm diameter was made and tested for experiments. The effects of driving current and frequency on the pumping forces and pumping speed were analyzed and compared with experimental measurements.

Generation of valley polarized current in graphene using quantum adiabatic pumping

  • Wang, Jing;Chan, K.S.
    • Advances in nano research
    • /
    • 제3권1호
    • /
    • pp.39-47
    • /
    • 2015
  • We study a device structure which can be used to generate pure valley current and valley polarized current using quantum adiabatic pumping. The design of the structure allows the flexibility of changing the structure from one for pure valley current generation to one for valley polarized current generation by changing the applied electric potentials through changing the symmetry of the structure. The device is useful for the development of valleytronic devices.

과도수리현상 해석과 실증을 통한 펌프장 안정성 확보방안 (A Safety Plan for the Pumping Station by Hydraulic Transient Analysis and Demonstration)

  • 라병필;김진만;이동근;박종호;김경엽
    • 한국유체기계학회 논문집
    • /
    • 제8권5호
    • /
    • pp.22-28
    • /
    • 2005
  • As the water supply facilities are recently getting larger, the domestic waterworks become multi-regional water supply system. Large water supply facilities generally consist of the intake pumping station, water treatment plant and water supply/distribution facilities. Although the pumping stations and the pipeline systems are used to pump up water, it often happens pipeline damage and flooding accident by the water hammer. In this paper, the intake pumping station is guaranteed by both the computer simulation and the field test analysis. This study is contributed to the safe operation program for the pumping station in which results of the adjustment on the safety plan of the pumping station, the air valve and the valve closing time.

색소레이저 펌핑을 위한 HCP의 개발 (Development of HCP Device for Dye Laser Pumping Source)

  • 오철한;박덕규;이성만
    • 대한전기학회논문지
    • /
    • 제35권9호
    • /
    • pp.375-379
    • /
    • 1986
  • The HCP(Hypocycloidal Pinch) device for plasma focus was modified for a pumping source of the dye laser, and the spectral distribution and time behavior of its light pulses were investigated by using a UV spectrometer, 70 MHz CRO and Si-PIN photodiode detector. An array of multiple stages of HCP and narrower electrode gaps were chosen in order to make a more uniform discharge along the HCP axis. The possible spectral range for the pumping of dye laser is 360-620nm, when the HCP is operated at 5-8kv of apllied voltage and 50-150Torr of Ar fill gas pressure. The rise-time and FWHM of light pulses from the HCP are 5us and 30-50us respectively when it is operated under the same conditions as above.

  • PDF

가압펌프장의 수격완화설비에 대한 보수·보강 사례 (Case Study of Repair Works on Surge Suppression Device for Booster Pumping Station)

  • 김상균;이동근;이계복;김경엽
    • 한국유체기계학회 논문집
    • /
    • 제8권4호
    • /
    • pp.20-26
    • /
    • 2005
  • When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity. The field tests on the waterhammer were carried out for Pangyo booster pumping station in which had six booster pumps and two in-line pumps with the motor of output 1,700 kW, respectively. The booster pumping station was equipped with the pump control valve as the main surge suppression device, and the surge relief valve as auxiliary one. But the pump control valve had not early controlled in the planned closing mode, the slamming occurred to the valve of which abruptly closed during the large reverse flow. Because the positive pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the pump control valve was damaged. After the air chambers were additionally installed in the booster pumping station, it was preyed that the water supply system acquire the safety and reliability on the pressure surge.

Analysis of SOHOS Flash Memory with 3-level Charge Pumping Method

  • Yang, Seung-Dong;Kim, Seong-Hyeon;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Kim, Jin-Seop;Ko, Young-Uk;An, Jin-Un;Lee, Hi-Deok;Lee, Ga-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권1호
    • /
    • pp.34-39
    • /
    • 2014
  • This paper discusses the 3-level charge pumping (CP) method in planar-type Silicon-Oxide-High-k-Oxide-Silicon (SOHOS) and Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) devices to find out the reason of the degradation of data retention properties. In the CP technique, pulses are applied to the gate of the MOSFET which alternately fill the traps with electrons and holes, thereby causing a recombination current Icp to flow in the substrate. The 3-level charge pumping method may be used to determine not only interface trap densities but also capture cross sections as a function of trap energy. By applying this method, SOHOS device found to have a higher interface trap density than SONOS device. Therefore, degradation of data retention characteristics is attributed to the many interface trap sites.

과도수리현상 해석과 실증을 통한 펌프장 안정성 확보방안 (The Plan of Safety for Pump Station through Hydraulic Transient Analysis & Demonstration)

  • 라병필;김진만;박종호;김경엽
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.199-207
    • /
    • 2004
  • Water supply facilities are recently getting larger according as domestic waterworks become multi regional water supply system. Large water supply facilities generally consist of the intake pumping station, water treatment station and water supply & distribution facilities. Although pumping stations and pipeline systems are used to pump up water, it often happens pipeline damage and flooding accident by the water hammer. As a result of this study, a pumping station is guaranteed by the computer simulation and field test analysis. Therefore these are contributed safety operation in pumping station through adjustment of the pumping station safety plan, air valve and valve closing time.

  • PDF

심실의 부하감소 측면에서 좌심실 보조장치의 최적 치료시기 예측을 위한 시뮬레이션 연구 (Prediction of Pumping Efficacy of Left Ventricular Assist Device according to the Severity of Heart Failure: Simulation Study)

  • 김은혜;임기무
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.22-28
    • /
    • 2013
  • It is important to begin left ventricular assist device (LVAD) treatment at appropriate time for heart failure patients who expect cardiac recovery after the therapy. In order to predict the optimal timing of LVAD implantation, we predicted pumping efficacy of LVAD according to the severity of heart failure theoretically. We used LVAD-implanted cardiovascular system model which consist of 8 Windkessel compartments for the simulation study. The time-varying compliance theory was used to simulate ventricular pumping function in the model. The ventricular systolic dysfunction was implemented by increasing the end-systolic ventricular compliance. Using the mathematical model, we predicted cardiac responses such as left ventricular peak pressure, cardiac output, ejection fraction, and stroke work according to the severity of ventricular systolic dysfunction under the treatments of continuous and pulsatile LVAD. Left ventricular peak pressure, which indicates the ventricular loading condition, decreased maximally at the 1st level heart-failure under pulsatile LVAD therapy and 2nd level heart-failure under continuous LVAD therapy. We conclude that optimal timing for pulsatile LVAD treatment is 1st level heart-failure and for continuous LVAD treatment is 2nd level heart-failure when considering LVAD treatment as "bridge to recovery".

직결식 펌프의 수격현상 (Waterhammer For In-line Booster Pump)

  • 김상균;이계복;김경엽
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.208-216
    • /
    • 2004
  • The waterhammer occured when the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity. The field tests of the waterhammer were carried out for PanGyo booster pumping station. The PanGyo pumuing station was installed booster pump of 6 sets and in-line pump of 2 sets. The main surge suppression device was equipped with the pump control valve and the surge relief valve as auxiliary. However, the pump control valve had not early controlled in the planned closing mode, and the slamming occurred to the valve of which abruptly closed during the large reverse flow. Because the pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the shaft of the valve was damaged. After the addition surge suppression device was equipped with air chamber. Further more in-line pump is needed surge suppression device that the pumping station acquired the safety and reliability for the pressure surge.

  • PDF