• Title/Summary/Keyword: Pumped Storage Power plants

Search Result 27, Processing Time 0.021 seconds

A Study on Best Generation Mix - Vision 2030 (적정 전원 구성에 관한 연구 - 비전 2030)

  • Jeong, Sang-Heon;Park, Jeong-Je;Shi, Bo;Wu, Liang;Choi, Jae-Seok;Kim, Ji-Nu;Lee, Yu-Su
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.176-179
    • /
    • 2007
  • This paper proposes a fuzzy linear programming based solution approach fur the long-term generation mix with multi-stages (years) considering air pollution constraints on $CO_2$ emissions, under uncertain circumstances as like as ambiguities of budget and reliability criterion level. This paper approaches to generation mix problem for 2030 year in Korea eventually. The proposed approach may give more flexible solution rather than too robust plan. The effectiveness of the proposed approach is demonstrated by applying it to solve the multi-years best generation mix problem on the Korea power system which contains nuclear, coal, LNG, oil and pumped-storage hydro plants.

  • PDF

Analysis of Differential Protection for $3{\Phi}$ V-Delta Transformer consist of Three $1{\Phi}$ Transformers (단상변압기로 구성된 삼상 주변압기 보호시스템 분석)

  • Lee, Jong-Hweon;Jung, Woo-Joong;Shin, Seong-Sik;Lee, Hyung;Shin, Chang-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.298-299
    • /
    • 2006
  • This paper analyzes operation sensitivity of a relay, a blind spot of differential protection relaying, and how to protect the blind spot in protective relying of $3{\Phi}$ Y-Delta transformer consisting of three $1{\Phi}$ transformers which Korean pumped storage power plants have been using. Each different protective relayings must be adopted because there are differences between $3{\Phi}$ trans-former and $3{\Phi}$ transformer consisting of three $1{\Phi}$ trans formers. Also, in the system using high resistance grounding for fault current restriction of delta side, protection for delta side faults have to be considered properly.

  • PDF

Examination of excess electricity generation patterns in South Korea under the renewable initiative for 2030

  • Kim, Philseo;Cho, So-Bin;Yim, Man-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2883-2897
    • /
    • 2022
  • According to the Renewable Energy 3020 Implementation Plan announced in 2017 by the South Korean government, the electricity share of renewable energy will be expanded to 20% of the total electricity generation by 2030. Given the intermittency of electricity generation from renewable energy, realization of such a plan presents challenges to managing South Korea's isolated national electric grid and implies potentially large excess electricity generation in certain situations. The purpose of this study is: 1) to develop a model to accurately simulate the effects of excess electricity generation from renewables which would arise during the transition, and 2) to propose strategies to manage excess electricity generation through effective utilization of domestic electricity generating capabilities. Our results show that in periods of greater PV and wind power, namely the spring and fall seasons, the frequency of excess electricity generation increases, while electricity demand decreases. This being the case, flexible operation of coal and nuclear power plants along with LNG and pumped-storage hydroelectricity can be used to counterbalance the excess electricity generation from renewables. In addition, nuclear energy plays an important role in reducing CO2 emissions and electricity costs unlike the fossil fuel-based generation sources outlined in the 8th Basic Plan.

Warm Start Up Time Reduction Through the Increase of Boiler Water Circulating Pump Inlet Water Temperature Rate of the Thermal Power Plant (관수온도 상승률 증가에 의한 발전용 보일러의 온간기동시간 단축에 관한 연구)

  • Kang, Hee-Seong;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.10 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • The national capacity of electricity of Korea was 81,737 MW and the peak demand was renewed by the record of 71,230 MW in 2012 which has been increasing since the first lighting ceremony had taken place in the Royal Palace(Kyung-Bok Goong) in 1887. Aa the counteract on the rapid increasing of the demand, Korean government is constructing and operating the high capacity nuclear and thermal power plants, however, the operating reserve on weekdays is small while those of weekends are more than 40% of capacity, so they are providing the pumped-storage power plants with the surplus electricity during weekends and operating the power plants which cost higher production price and located in the capital area with WSS (Weekly Start and Stop) mode including the Seoul Thermal Power Plant. Since the Seoul Thermal Power Plant is spending huge amount of expenses for more than 30 times of the WSS annually due to the high production cost even though it is in Seoul, the core of the demand, I chose the power plant unit #5 which was on the grid in 1969 for the case to confirm reducing 23% of the warm start-up time by applying the "Start-up time management program", and that reducing 35% of the water temperature increasing time by accelerate the increasing rate of the inlet temperature of the water circulating pump.

  • PDF

Performance Optimization of High Specific Speed Pump-Turbines by Means of Numerical Flow Simulation (CFD) and Model Testing

  • Kerschberger, Peter;Gehrer, Arno
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.352-359
    • /
    • 2010
  • In recent years, the market has shown increasing interest in pump-turbines. The prompt availability of pumped storage plants and the benefits to the power system achieved by peak lopping, providing reserve capacity, and rapid response in frequency control are providing a growing advantage. In this context, there is a need to develop pumpturbines that can reliably withstand dynamic operation modes, fast changes of discharge rate by adjusting the variable diffuser vanes, as well as fast changes from pumping to turbine operation. In the first part of the present study, various flow patterns linked to operation of a pump-turbine system are discussed. In this context, pump and turbine modes are presented separately and different load cases are shown in each operating mode. In order to create modern, competitive pump-turbine designs, this study further explains what design challenges should be considered in defining the geometry of a pump-turbine impeller. The second part of the paper describes an innovative, staggered approach to impeller development, applied to a low head pump-turbine project. The first level of the process consists of optimization strategies based on evolutionary algorithms together with 3D in-viscid flow analysis. In the next stage, the hydraulic behavior of both pump mode and turbine mode is evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Finally, the progress in hydraulic design is demonstrated by model test results that show a significant improvement in hydraulic performance compared to an existing reference design.

Influence of Guide Vane Setting in Pump Mode on Performance Characteristics of a Pump-Turbine

  • Li, Deyou;Wang, Hongjie;Nielsen, Torbjorn K.;Gong, Ruzhi;Wei, Xianzhu;Qin, Daqing
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.154-163
    • /
    • 2017
  • Performance characteristics in pump mode of pump-turbines are vital for the safe and effective operation of pumped storage power plants. However, the head characteristics are different under different guide vane openings. In this paper, 3-D steady simulations were performed under 13mm, 19mm and 25mm guide vane openings. Three groups of operating points under the three GVOs were chosen based on experimental validation to investigate the influence of guide vane setting on flow patterns upstream and downstream. The results reveal that, the guide vane setting will obviously change the flow pattern downstream, which in turn influences the flow upstream. It shows a strong effect on hydraulic loss (power dissipation) in the guide and stay vanes. It is also found that the hydraulic loss mainly comes from the flow separation and vortices. In addition, in some operating conditions, the change of guide vane opening will change the flow angle at the runner inlet and outlet, which will change the Euler momentum (power input). The joint action of Euler momentum and hydraulic loss results in the change of the head characteristics.

Regional Development And Dam Construction in Korea (한국의 지역개발과 댐건설)

  • 안경모
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.38-42
    • /
    • 1976
  • Because of differences in thoughts and ideology, our country, Korea has been deprived of national unity for some thirty years of time and tide. To achieve peaceful unification, the cultivation of national strength is of paramount importance. This national strength is also essential if Korea is to take rightful place in the international societies and to have the confidence of these societies. However, national strength can never be achieved in a short time. The fundamental elements in economic development that are directly conducive to the cultivation of national strength can be said to lie in -a stable political system, -exertion of powerful leadership, -cultivation of a spirit of diligence, self-help and cooperation, -modernization of human brain power, and -establishment of a scientific and well planned economic policy and strong enforcement of this policy. Our country, Korea, has attained brilliant economic development in the past 15 years under the strong leadership of president Park Chung Hee. However, there are still many problems to be solved. A few of them are: -housing and home problems, -increasing demand for employment, -increasing demand for staple food and -the need to improve international balance of payment. Solution of the above mentioned problems requires step by step scientific development of each sector and region of our contry. As a spearhead project in regional development, the Saemaul Campaign or new village movement can be cited. The campaign is now spreading throughout the country like a grass fire. However, such campaigns need considerable encouragement and support and the means for the desired development must be provided if the regional and sectoral development program is to sucdceed. The construction of large multipurpose dams in major river basin plays significant role in all aspects of national, regional and sectoral development. It ensures that the water resource, for which there is no substitute, is retained and utilized for irrigation of agricultural areas, production of power for industry, provision of water for domestic and industrial uses and control of river water. Water is the very essence of life and we must conserve and utilize what we have for the betterment of our peoples and their heir. The regional and social impact of construction of a large dam is enormous. It is intended to, and does, dras tically improve the "without-project" socio-economic conditions. A good example of this is the Soyanggang multipurpose dam. This project will significantly contribute to our national strength by utilizing the stored water for the benefit of human life and relief of flood and drought damages. Annual average precipitation in Korea is 1160mm, a comparatively abundant amount. The catchment areas of the Han River, Keum River, and Youngsan River are $62,755\textrm{km}^2$, accounting for 64% of the national total. Approximately 62% of the national population inhabits in this area, and 67% of the national gross product comes from the area. The annual population growth rate of the country is currently estimated at 1.7%, and every year the population growth in urban area increases at a rising rate. The population of Seoul, Pusan, and Taegu, the three major cities in Korea, is equal to one third of our national total. According to the census conducted on October 1, 1975, the population in the urban areas has increased by 384,000, whereas that in rural areas has decreased by 59,000,000 in the past five years. The composition of population between urban and rural areas varied from 41%~59% in 1959 to 48%~52% in 1975. To mitigate this treand towards concentration of population in urban areas, employment opportunities must be provided in regional and rural areas. However, heavy and chemical industries, which mitigate production and employment problems at the same time, must have abundant water and energy. Also increase in staple food production cannot be attained without water. At this point in time, when water demand is rapidly growing, it is essential for the country to provide as much a reservoir capacity as possible to capture the monsoon rainfall, which concentarated in the rainy seaon from June to Septesmber, and conserve the water for year round use. The floods, which at one time we called "the devil" have now become a source of immense benefit to Korea. Let me explain the topographic condition in Korea. In northern and eastern areas we have high mountains and rugged country. Our rivers originate in these mountains and flow in a general southerly or westerly direction throught ancient plains. These plains were formed by progressive deposition of sediments from the mountains and provide our country with large areas of fertile land, emminently suited to settlement and irrigated agricultural development. It is, therefore, quite natural that these areas should become the polar point for our regional development program. Hower, we are fortunate in that we have an additional area or areas, which can be used for agricultural production and settlement of our peoples, particularly those peoples who may be displaced by the formation of our reservoirs. I am speaking of the tidelands along the western and southern coasts. The other day the Ministry of Agriculture and Fishery informed the public of a tideland reclamation of which 400,000 hectares will be used for growing rice as part of our national food self-sufficiency programme. Now, again, we arrive at the need for water, as without it we cannot realize this ambitious programme. And again we need those dams to provide it. As I mentioned before, dams not only provide us with essential water for agriculture, domestic and industrial use, but provide us with electrical energy, as it is generally extremely economical to use the water being release for the former purposes to drive turbines and generators. At the present time we have 13 hydro-electric power plants with an installed capacity of 711,000 kilowatts equal to 16% of our national total. There are about 110 potential dams ites in the country, which could yield about 2,300,000 kilowatts of hydro-electric power. There are about 54 sites suitable for pumped storage which could produce a further 38,600,000 kilowatts of power. All available if we carefully develop our water resources. To summarize, water resource development is essential to the regional development program and the welfare of our people, it must proceed hand-in-hand with other aspects of regional development such as land impovement, high way extension, development of our forests, erosion control, and develop ment of heavy and chemical industries. Through the successful implementation of such an integrated regional development program, we can look forward to a period of national strength, and due recognition of our country by the worlds societies.

  • PDF