• Title/Summary/Keyword: Pump turbine

Search Result 186, Processing Time 0.021 seconds

Loss Analysis by Impeller Blade Angle in the S-Curve Region of Low Specific Speed Pump Turbine

  • Ujjwal Shrestha;Young-Do Choi
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.35-43
    • /
    • 2024
  • A pump turbine is a technically matured option for energy production and storage systems. At the off-design operating range, the pump turbine succumbed to flow instabilities, which correlated with the pump turbine geometry. A low specific speed pump turbine was designed and modified according to the impeller blade angle. Reynolds-Average Navier-Stokes is carried out with a shear stress transport turbulence model to evaluate the detailed flow characteristics in the pump turbine. The impeller blade inlet angle (𝛽1) and outlet angle (𝛽2) are used to evaluate hydraulic loss in the pump turbine. When 𝛽1 changed from low to high value, the maximum efficiency is increased by 4.75% in turbine mode. The S-Curve inclination is reduced by 8% and 42% for changes in 𝛽1 and 𝛽2 from low to high values, respectively. At α = 21°, the shock loss coefficient (𝜁s) is reduced by 16% and 19% with increases of 𝛽1 and 𝛽2 from low to high values, respectively. When 𝛽1 and 𝛽2 values increased from low to high, the impeller friction coefficient (𝜁f) increased and decreased by 20% and 8%, respectively. Hence, the high 𝛽2 effectively reduced the loss coefficient and S-Curve inclination.

Design of a Pump-Turbine Based on the 3D Inverse Design Method

  • Chen, Chengcheng;Zhu, Baoshan;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.20-28
    • /
    • 2015
  • The pump-turbine impeller is the key component of pumped storage power plant. Current design methods of pump-turbine impeller are private and protected from public viewing. Generally, the design proceeds in two steps: the initial hydraulic design and optimization design to achieve a balanced performance between pump mode and turbine mode. In this study, the 3D inverse design method is used for the initial hydraulic impeller design. However, due to the special demand of high performance in both pump and reverse mode, the design method is insufficient. This study is carried out by modifying the geometrical parameters of the blade which have great influence and need special consideration in obtaining the high performance on the both modes, such as blade shape type at low pressure side (inlet of pump mode, outlet of turbine mode) and the blade lean at blade high pressure side (outlet of pump mode, inlet of turbine mode). The influence of the geometrical parameters on the performance characteristic is evaluated by CFD analysis which presents the efficiency and internal flow results. After these investigations of the geometrical parameters, the criteria of designing pump-turbine impeller blade low and high sides shape is achieved.

Performance Optimization of High Specific Speed Pump-Turbines by Means of Numerical Flow Simulation (CFD) and Model Testing

  • Kerschberger, Peter;Gehrer, Arno
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.352-359
    • /
    • 2010
  • In recent years, the market has shown increasing interest in pump-turbines. The prompt availability of pumped storage plants and the benefits to the power system achieved by peak lopping, providing reserve capacity, and rapid response in frequency control are providing a growing advantage. In this context, there is a need to develop pumpturbines that can reliably withstand dynamic operation modes, fast changes of discharge rate by adjusting the variable diffuser vanes, as well as fast changes from pumping to turbine operation. In the first part of the present study, various flow patterns linked to operation of a pump-turbine system are discussed. In this context, pump and turbine modes are presented separately and different load cases are shown in each operating mode. In order to create modern, competitive pump-turbine designs, this study further explains what design challenges should be considered in defining the geometry of a pump-turbine impeller. The second part of the paper describes an innovative, staggered approach to impeller development, applied to a low head pump-turbine project. The first level of the process consists of optimization strategies based on evolutionary algorithms together with 3D in-viscid flow analysis. In the next stage, the hydraulic behavior of both pump mode and turbine mode is evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Finally, the progress in hydraulic design is demonstrated by model test results that show a significant improvement in hydraulic performance compared to an existing reference design.

Cavitation Characteristics of a Pump-turbine Model by CFD Analysis

  • Singh, Patrick Mark;Chen, Chengcheng;Chen, Zhenmu;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.49-55
    • /
    • 2015
  • The pumped storage plant operates with quick change of the discharge as well as quick changes between pump mode and turbine mode. This study focuses on the cavitation analysis of a pump-turbine model because in turbo-machinery, cavitation can reduce the performance and shorten service life. The pump-turbine model system consists of 7 blades, 20 stay vanes (including tongue) and 20 guide vanes. This study adopts the Rayleigh-Plesset model as a cavitation model, which illustrates cavitation by using the air volume fraction method. The pump mode and turbine mode at the operating condition of partial loading, normal and excessive loading are analyzed to investigate the cavitation performance of the pump-turbine. It was observed that this pump-turbine design showed very good cavitation characteristics with no cavitation bubbles in all operating conditions. Overall value of air volume fraction of both mode at different operating condition are lower than 1, which confirms low possibility of cavitation occurrence at current situation.

Hydrodynamic Performance Test of a Turbopump Assembly (터보펌프 조립체의 수력 성능 시험)

  • Hong, Soon-Sam;Kim, Dae-Jin;Kim, Jin-Sun;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.249-254
    • /
    • 2008
  • Hydrodynamic performance test of a turbopump for a liquid rocket engine is carried out. The turbopump is composed of an oxidizer pump, a fuel pump and a turbine, and the two pumps are driven by the turbine. In the test, water is used for the pumps as working media and air is used for the turbine. Performance parameters of pumps and a turbine are drawn, and a power balance between the pumps and the turbine are calculated. The calculation shows a good power balance, which implies that the pump component tests, the turbine component test and the assembly test are reliably performed. At the starting period of the test, pressure rise-flow rate curve of a pump gradually approaches the ideal curve which could be obtained by very slow starting.

Dynamic Simulation of Pump-Storage Power Plants with different variable speed configurations using the Simsen Tool

  • Kruger, Klaus;Koutnik, Jiri
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.334-345
    • /
    • 2009
  • Pumped storage power plants are playing a significant role in the contribution to the stabilization of an electrical grid, above all by stable operation and fast reaction to sudden load respectively frequency changes. Optimized efficiency and smooth running characteristics both in pump and turbine operation, improved stability for synchronization in turbine mode, load control in pump mode operation and also short reaction times may be achieved using adjustable speed power units. Such variable speed power plants are applicable for high variations of head (e.g. important for low head pump-turbine projects). Due to the rapid development of power semiconductors and frequency converter technology, feasible solutions can be provided even for large hydro power units. Suitable control strategies as well as clear design criteria contribute significantly to the optimal usage of the pump turbine and motor-generators. The SIMSEN tool for dynamic simulations has been used for comparative investigations of different configurations regarding the power converter topology, types of semiconductors and types of motor-generators including the coupling to the hydraulic system. A brief overview of the advantages & disadvantages of the different solutions can also be found in this paper. Using this approach, a customized solution minimizing cost and exploiting the maximum usage of the pump-turbine unit can be developed in the planning stage of new and modernization pump storage projects.

Characteristics of the Shaft Vibration in a High Head Pump-Turbine (고낙차 펌프-터빈에서의 축계 진동 특성)

  • Ha, Hyun-Cheon;Choi, Seong-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.27-31
    • /
    • 1999
  • This paper describes the shaft vibration phenomena measured on a pump-turbine of a pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine is varied from 100 to 300 MW in the generating mode. The magnitude of the shaft vibration highly depends on the power load. The vibration magnitude of the shaft is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration is low. From nitration spectra, it is shown that the frequency of major nitration in that load zone is 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component does not occur below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, the shaft vibration is highly decreased due to an increased bearing preload.

  • PDF

Characteristics of the Shaft Vibration in a High Head Pump-Turbine (고낙차 펌프-터빈에서의 축계 진동 특성)

  • Ha, Hyun Cheon;Choi, Seong Pil
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.166-172
    • /
    • 1998
  • This paper describes the shaft vibration phenomena measured on a pump-turbine ofa pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine was varied from 100 to 300 MW in the generating mode. It was found that the magnitude of the shaft vibration was highly dependent upon the power load. The vibration magnitude of the shaft vibration is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration low. From vibration spectra, it was found that the frequency of major vibration in that load zone was 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component disappeared below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, it was found that shaft vibration was highly decreased due to the increase of bearing preload.

  • PDF

Study on the damage of Bearings due to failure of Oil Supply System at turbine (터빈 베어링 윤활유 공급 중단에 의한 베어링 손상에 대한 고찰)

  • Koo, Jae-Raeyang;Lee, Woo-Kwang;Koo, Woo-Sik;Kim, Yeon-Hwan;Park, Kwang-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1258-1261
    • /
    • 2003
  • Oil supply system is one of the most important part of Turbine. Lubricating oil of bearings supplied by oil pump. Failure of Oil supply pump critical damaged parts of Turbine, especially bearings. In this paper we have discussed the serious damage of turbine bearings due to failure of Oil supply pump.

  • PDF

Investigation into the Internal Flow Characteristics of a Pump-turbine Model

  • Singh, Patrick Mark;Chen, Chengcheng;Chen, Zhenmu;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.36-42
    • /
    • 2015
  • This is a study about one of the most widely used hydro machinery all over the world - pump-turbine. The system has an impeller which pumps water to an upper reservoir during the night and the same impeller acts as a runner for turbine mode during the day for providing stable electrical power to the grid. The internal flow analysis is investigated in this study to help understand how the water passes through the passage of the vanes and blades, providing the designer with useful information on the behavior of recirculation flows which could reduce the efficiency of the pump-turbine. The 100 kW pump-turbine model has H = 32 m, $Q=0.336m^3/s$ and $N=1200min^{-1}$. For this study there are 7 blades, 19 stay vanes and 20 guide vanes. From this study, it was observed that this pump-turbine design showed very good internal flow characteristics with no flow separation and no recirculation flows in normal operation mode.