• Title/Summary/Keyword: Pump performance

Search Result 1,915, Processing Time 0.026 seconds

Development of wall climbing robot using vacuum adsorption with legged type movement (진공 흡착과 보행형 이동에 의한 벽면이동 로봇의 개발)

  • Park, Soo-Hyun;Seo, Kyeong-Jun;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.344-349
    • /
    • 2017
  • Wall-climbing robots have been developed for various purposes, such as cleaning skyscraper windows, maintaining large structures, and welding vessels. Conventional wall-climbing robots use movement systems based on wheels or legs. However, wheeled robots suffer from slipping effects, while legged systems require many actuators and control systems for the complex linkage structure, which also increases the weight of the robot. To overcome these disadvantages, we propose a new wall-climbing robot that walks based on gorilla locomotion. The proposed robot consists of a DC drive motor, a vacuum pump for adsorption, and a micro controller for controlling the system. The performance of the robot was experimentally verified on vertical and horizontal flat surfaces. The robot could be used for various functions in industrial sites or disaster areas.

A Study of Cooldown Performance of Shutdown Cooling System of Korea Next Generation Reactor (차세대 원자로 정지냉각계통의 냉각 성능에 대한 연구)

  • 유성연;이상섭
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.525-532
    • /
    • 1999
  • The standardized Korea Next Generation Reactor (KNGR) NSSS has developed in the basis of the ABB-CE System 80+ design concept. In this study, several regulatory requirements for the KNGR shutdown cooling system (SCS) operation are investigated. The purpose of this study is to establish the technical self-reliance for SCS design by supporting fundamental data such as SDCHX effective area and reactor CCW flow rate. Thermal power of KNGR would be increased to about 4,000 $MW_{th}$ in comparison with thermal power 2.825 $MW_{th}$ of UCN 3&4, therefore, SCS design data shall b recalculated by using the KDESCENT Code, which could evaluate cooling capability of SCS. It is found that SCS minimum flow rate is able to remove the primary sensible heat. Reviewing the major components such as heat exchanger, pump, value, and operating procedure, it is concluded as follows.

  • PDF

ECO-Friendly Reservoir Tank Management using Prediction for Improved Water Quality (수질향상을 위해 예측을 이용한 환경 친화적인 저수조 관리)

  • Chung, Kyung-Yong;Jo, Sun-Moon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.9-16
    • /
    • 2009
  • According to the construction of infrastructure for the water resource management services, the importance of the eco-friendly reservoir tank management is being spotlighted. In this paper, we proposed the eco-friendly reservoir tank management using prediction for improving the water quality and on-line managing efforts of reservoir tanks. The proposed method defined the context and environment of the reservoir tank and predicted the profited service according to the pump motion, the solar battery, the chemicals, the water level, the telephone line, and the modem using collaborative filtering. To evaluate the performance of the eco-friendly reservoir tank management system using prediction, we conducted sample T-tests so as to verify usefulness. This evaluation found that the difference of satisfaction by service was statistically meaningful, and showed high satisfaction. Accordingly, the satisfaction and the quality of services will be improved the efficient prediction by supporting the context information as well as the environment information.

Performance Improvement of the Hydrostatic Piston Shoe Bearing of an EHA-Piston Pump under Boundary Friction Conditions (EHA 펌프용 피스톤 슈 정압베어링의 경계 마찰 성능 개선)

  • Hong, Y.S.;Kwon, Y.C.;Kim, C.H.;Lee, S.L.;Kim, B.K.;Moon, J.S.;Kim, J.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.30-35
    • /
    • 2014
  • The pumps of electro-hydrostatic actuators operate most frequently in boundary lubrication speed range, as they compensate for the position control errors as a control element. When conventional swash plate type piston pumps are applied to electro-hydrostatic actuators, the frictional power losses as well as the wear rate of sliding components, such as piston shoes can increase drastically under the boundary friction condition. In this paper, the power losses of the piston shoes were investigated which were engendered by a frictional solid-to-solid contact and leakage flow rate of their hydrostatic bearing. In order to reduce them, DLC-coating was applied to the swash plate and the ball joint of pistons along with its effects were demonstrated. In addition, it was also shown that the wear rate of the piston shoes could be markedly reduced using the DLC-coated swash plate.

Concrete pavement monitoring with PPP-BOTDA distributed strain and crack sensors

  • Bao, Yi;Tang, Fujian;Chen, Yizheng;Meng, Weina;Huang, Ying;Chen, Genda
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.405-423
    • /
    • 2016
  • In this study, the feasibility of using telecommunication single-mode optical fiber (SMF) as a distributed fiber optic strain and crack sensor was evaluated in concrete pavement monitoring. Tensile tests on various sensors indicated that the $SMF-28e^+$ fiber revealed linear elastic behavior to rupture at approximately 26 N load and 2.6% strain. Six full-scale concrete panels were prepared and tested under truck and three-point loads to quantify the performance of sensors with pulse pre-pump Brillouin optical time domain analysis (PPP-BOTDA). The sensors were protected by precast mortar from brutal action during concrete casting. Once air-cured for 2 hours after initial setting, half a mortar cylinder of 12 mm in diameter ensured that the protected sensors remained functional during and after concrete casting. The strains measured from PPP-BOTDA with a sensitivity coefficient of $5.43{\times}10^{-5}GHz/{\mu}{\varepsilon}$ were validated locally by commercial fiber Bragg grating (FBG) sensors. Unlike the point FBG sensors, the distributed PPP-BOTDA sensors can be utilized to effectively locate multiple cracks. Depending on their layout, the distributed sensors can provide one- or two-dimensional strain fields in pavement panels. The width of both micro and major cracks can be linearly related to the peak strain directly measured with the distributed fiber optic sensor.

An Operation Status Analysis of Library Building using BEMS Data; Energy Performance Evaluation on Initial Stage of Completion (BEMS 데이터를 활용한 도서관 건물의 운전현황 분석 -준공 초기단계의 건물 에너지 성능 평가)

  • Park, Seong-cheol;Ha, Ju-wan;Kim, Hwan-yong;Song, Young-hak
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.669-679
    • /
    • 2018
  • Energy consumption savings in buildings should be reviewed in diverse areas such as air conditioning system and lighting responsible for cooling and heating, and energy management systems such as BAS (Building Automation System) and BEMS (Building Energy Management System) are introduced to improve energy consumption efficiency and to promote economic control of related facilities by integrated management of energy generated and consumption in buildings. The measured building of this study uses regenerative geothermal system. Measured values of heat pump and system COP were 4.7 and 4.2 respectively, and they were found to be higher 11.9% and 23.5% than rated values. As a result of analyzing the air conditioning and lighting energy from the first floor to the fourth floor performing the air conditioning, the second and third floors, which have a high frequency of use, are compared with the first and fourth floors 50% higher energy consumption ratio. On the other hand, the general heat storage system uses the nighttime power of the previous day to store heat and use it the next day. The total number of days of abnormal operation during the summer season is 61 days. The electricity cost corresponding to the abnormal operation is 1,840,641 KRW, and the normal operation using the nighttime power is 1,363,561 KRW, which is difference of 477,080 KRW, 35% increase in cost. We will utilize it as the main data of BEMS through analysis of winter operation characteristics as well as summer operation characteristics.

The observation of permeation grouting method as soil improvement technique with different grout flow models

  • Celik, Fatih
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.367-374
    • /
    • 2019
  • This study concluded the results of a research on the features of cement based permeation grout, based on some important grout parameters, such as the rheological properties (yield stress and viscosity), coefficient of permeability to grout ($k_G$) and the inject ability of cement grout (N and $N_c$ assessment), which govern the performance of cement based permeation grouting in porous media. Due to the limited knowledge of these important grout parameters and other influencing factors (filtration pressure, rate and time of injection and the grout volume) used in the field work, the application of cement based permeation grouting is still largely a trial and error process in the current practice, especially in the local construction industry. It is seen possible to use simple formulas in order to select the injection parameters and to evaluate their inter-relationship, as well as to optimize injection spacing and times with respect to injection source dimensions and in-situ permeability. The validity of spherical and cylindrical flow model was not verified by any past research works covered in the literature review. Therefore, a theoretical investigation including grout flow models and significant grout parameters for the design of permeation grouting was conducted in this study. This two grout flow models were applied for three grout mixes prepared for w/c=0.75, w/c=1.00 and w/c=1.25 in this study. The relations between injection times, radius, pump pressure and flow rate for both flow models were investigated and the results were presented. Furthermore, in order to investigate these two flow model, some rheological properties of the grout mixes, particle size distribution of the cement used in this study and some geotechnical properties of the sand used in this work were defined and presented.

Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation (연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;QUACH, THAI QUYEN;AHN, KOOK YOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.

Analysis of Performance and Energy Saving of a SOFC-Based Hybrid Desiccant Cooling System (건물용 연료전지 기반 하이브리드 제습냉방시스템 성능 및 에너지 절감 분석)

  • IN, JUNGHYUN;LEE, YULHO;KANG, SANGGYU;PARK, SUNGJIN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.2
    • /
    • pp.136-146
    • /
    • 2019
  • A solid oxide fuel cell (SOFC) based hybrid desiccant cooling system model is developed to study the effect of fuel utilization rate of the SOFC on the reduction of energy consumption and $CO_2$ emission. The SOFC-based hybrid desiccant cooling system consists of an SOFC system and a Hybrid desiccant cooling system (HDCS). The SOFC system includes a stack and balance of plant (BOP), and HDCS. The HDCS consists of desiccant rotor, indirect evaporative cooler, electric heat pump (EHP), and heat exchangers. In this study, using energy load data of a commercial office building and SOFC-based HDCS model, the amount of ton of oil equivalent (TOE) and ton of $CO_2$ ($tCO_2$) are calculated and compared with the TOE and $tCO_2$ generation of the EHP using grid electricity.

Chemical Resistance and Field Trial of 3D-Printed Plastic Ball Bearing Used in Electric Motors for Chemical Processes (화학공정용 전동기에 사용된 3D 프린팅 플라스틱 볼베어링의 내화학성 평가 및 현장적용 연구)

  • Youngjun Kwon;Myounggyu Noh
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Fluid pumps in chemical processes are typically driven by electric motors. Even if the motor is separated from the pump with seals, wear resulting from friction and misalignment can lead to leakage of chemical fluid, causing corrosion in the bearing supporting the motor, and, eventually, failure of the motor. It is thus a standard procedure to replace bearings at regular intervals. In this article, we propose 3D-printed plastic ball bearings for use as an alternative to commercial stainless-steel ball bearings. The plastic bearings are easy to manufacture, require less time to replace, and are chemically resistant. To validate the applicability of the plastic bearings, we first conducted chemical resistance tests. Bearings were immersed in 30 caustic acid and 30 nitric acid for 30 min and 24 h, respectively. The test results showed no corrosive damage to the bearings. A test rig was set up to compare the performance of the plastic bearings with that of the commercially equivalent deep-groove ball bearings. Loading test results showed that the plastic bearings performed as well as the commercial bearing in terms of vibration level and load-handling capability. Finally, a plastic bearing was subjected to a clean-in-place process for three months. It actually outperformed the commercial bearing in terms of chemical resistance. Thus, 3D-printed plastic bearings are a viable alternative to stainless-steel ball bearings.