• Title/Summary/Keyword: Pump Performance

Search Result 1,906, Processing Time 0.033 seconds

A Study on the Performance Prediction of Automotive Water Pump with Double Discharge Single Suction (자동차용 양토출 단흡입 워터펌프의 성능 예측에 관한 연구)

  • 허형석;박경석;이기수;원종필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.27-36
    • /
    • 2004
  • A Numerical analysis has been used to predict the performance in the automotive water pump with double discharge single suction. The influence of parameters such as coolant flow rate, rotational speed, ratio of blade height and clearance has been investigated. Also, the prediction of hydraulic performances such as static pressure rise, shaft power, hydraulic power and pump efficiency is carried out on the water pump including an impeller and a volute casing. A full size water pump test bench has been developed to validate the CFD flow model. Discharge flow rate, suction pressure, discharge pressure, rotational speed and torque measurements are provided. Coolant temperature is 8$0^{\circ}C$, water tank pressure is 1 kgf/$\textrm{cm}^2$ and flow rates vary.

Performance Analysis of Orbiter Vacuum Pump (오비터 진공펌프 성능해석)

  • Shim, Jae-Hwi;Kim, Hyun-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.287-290
    • /
    • 2006
  • Orbiter mechanism has been applied to vacuum pump design for small oxygen generator where low vacuum of about 200mmHg is required. Performance of the designed vacuum pump has been numerically investigated: calculated volumetric and adiabatic efficiencies were 69.7% and 83.9%, respectively for leakage clearance of $10{\mu}m$. Total efficiency of the orbiter vacuum pump was 77.5%. At the shaft speed of 1700 rpm suction displacement volume of 6.3cc provided discharge flow at the rate of 2.3 liter/min with power consumption of 10.1Watt. Torque variation of the orbiter pump was only about 20% of that of diaphragm pump.

  • PDF

Design and Analysis of Centrifugal Pump using Experimental Factor (실험계수를 이용한 원심 펌프의 설계와 해석)

  • Im, Hyo-Nam;Kim, Jin-Young;Yang, Chang-Jo;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.434-440
    • /
    • 2000
  • This study is focused on the performance prediction and design of the centrifugal pump with optimum shape. Design and analysis of centrifugal pump rely on experience of designer due to many fluid mechanical and geometrical variables. In this study, a design method was developed with experimental factors and analysed the method by comparition with 2nd-order vortex panel method. Impeller is the most important component affecting the performance of the centrifugal pump. The predicted total head for three cases, of which designs were determined by this method, agrees well with a particular commercial pump. This study shows that satisfactory performance of an optimal pump shape can be obtained through the automatic design routine.

  • PDF

Development of Vertical Barrel Type Multistage Pump (비속도 150급 수직배럴형 다단 원심펌프 개발)

  • Yoo, Il-Su;Park, Mu-Ryong;Hwang, Soon-Chan;Kim, Sung-Ki;Yoon, Eui-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • A vertical-axis multistage pump with low specific speed was developed, satisfying performance requirements such as flow rate, total head, and NPSH. The developed pump was designed through conceptual design, configuration design, and performance analysis by CFD which were established in KIMM. The prototype pump's mechanical wholesomeness besides hydraulic performances were verified by running test, performance test, and reliability test.

Performance Analysis of Orbiter Vacuum Pump (오비터 진공펌프 성능해석)

  • Kim, Hyun-Jin;Shim, Jae-Hwi
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.5 s.38
    • /
    • pp.28-35
    • /
    • 2006
  • Orbiter mechanism has been applied to vacuum pump design for small oxygen generator where low vacuum of about 200 mmHg is required. Performance of the designed vacuum pump has been numerically investigated: calculated volumetric and adiabatic efficiencies were 69.7% and 83.9%, respectively for leakage clearance of $10{\mu}m$. Total efficiency of the orbiter vacuum pump was 77.5%. At the shaft speed of 1700 rpm suction displacement volume of 6.3cc provided discharge flow at the rate of 2.3 liter/min with power consumption of 10.1Watt. Torque variation of the orbiter pump was only about 20% of that of diaphragm pump.

Numerical Design and Performance Prediction of Low Specific Speed Centrifugal Pump Impeller

  • Yongxue, Zhang;Xin, Zhou;Zhongli, Ji;Cuiwei, Jiang
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.133-139
    • /
    • 2011
  • In this paper, Based on Two-dimensional Flow Theory, adopting quasi-orthogonal method and point-by-point integration method to design the impeller of the low specific speed centrifugal pump by code, and using RANS (Reynolds Averaged N-S) Equation with a standard k-${\varepsilon}$ two-equation turbulence model and log-law wall function to solve 3D turbulent flow field in the impeller of the low specific speed pump. An analysis of the influences of the blade profile on velocity distributions, pressure distributions and pump performance and the investigation of the flow regulation pattern in the impeller of the centrifugal pump are presented. And the result shows that this method can be used as a new way in low speed centrifugal pump impeller design.

Performance Characteristics of R134a Supercritical Heat Pump (R134a 냉매용 초임계 히트펌프의 성능 특성)

  • Choi, In-Soo
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.60-65
    • /
    • 2014
  • In this paper, cycle performance analysis for heating capacity, compression work and COP of R134a supercritical heat pump is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, pressure and outlet temperature of gas cooler, compressor efficiency and evaporating temperature in the R134a supercritical heat pump system. The main results were summarized as follows : Superheating degree, pressure and outlet temperature of gas cooler, compressor efficiency and evaporating temperature of R134a heat pump system have an effect on the heating capacity, compression work and COP of this system. With a thorough grasp of these effect, it is necessary to design the supercritical heat pump using R134a. The prediction for COP of R134a supercritical heat pump have been proposed through multiple regression analysis.

Study for the Reliability Evaluation of a Volute Pump (벌류트 펌프의 신뢰성 평가에 관한 연구)

  • Jung, Dong Soo;Lee, Yong Bum;Kang, Bo Sik
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.23-29
    • /
    • 2018
  • The objective of this paper is to evaluate the reliability of a volute pump and presents test results through performance and life tests. The performance and life test methods were presented by analyzing the failure modes of the volute pump. Zero failure test time was calculated to evaluate the reliability of the volute pump and then, the test was performed under accelerated conditions. The test was also carried out to check the failure modes of the field conditions. This study can be provided to improve the product reliability through failure analysis of the volute pump. And failure cause of typical failure case has been investigated and improvement design has been presented. The performance test results of before and after the accelerated life test were presented to confirm the improved reliability of the volute pump.

Design Optimization on Wastewater Treatment Pump of Satisfaction for High Head and Low Flow Rate (고양정 및 저유량을 만족하는 폐수처리용 펌프 설계 최적화)

  • KIM, SUNG;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.583-590
    • /
    • 2022
  • In this paper, the performance characteristics of the 2 vane pump for wastewater treatment were investigated using response surface method(RSM) with commercial computation fluid dynamics(CFD) software. Design variables of wastewater treatment pump were defined with the meridional plane of the 2 vane pump impeller. The objective functions were defined as the total head and the efficiency at the design flow rate. The hydraulic performance of optimum model was verified by numerical analysis and the reliability of the model was retained by comparison of numerical analysis and comparative analysis with the reference model.

Analysis on Cooling and Heating Performance of Water-to-Water Heat Pump System for Water Source Temperature (물-물 수온차 히트펌프 시스템의 원수온도에 따른 성능 특성 분석)

  • Park, Tae Jin;Cho, Yong;Park, Jin-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.169.2-169.2
    • /
    • 2010
  • The research assesses the performance of the water-to-water heat pump system installed in Cheongju water treatment plant for cooling and heating ventilation. In summer season monthly averaged COP is ranged from 3.85 to 4.56 according to the water source temperature, and the performance is increased as the raw water temperature is dropped. While, heating performance is increased for the high temperature water source, and the monthly averaged COP is changed from 2.92 to 3.82. The correlation of the water source temperature and the heat pump performance shows a linear tendency by the simple regression of average data. In heating, the COP of heat pump system linearly rises according to the water source temperature. In comparison, the COP in cooling linearly reduces as the raw water temperature is raised. The goodness of fit at the simple regression shows the coefficient of determination 82% in cooling, 46% in heating. The electric cost of water-to-water heat pump is reduced by 40% compared to that of air source heat pump.

  • PDF