• 제목/요약/키워드: Pump Characteristics

검색결과 1,440건 처리시간 0.039초

범프 플로팅 링 실의 정특성에 대한 해석적 연구 (Theoretical research of Static Characteristics of Bump Floating Ring Seal)

  • 김경욱;정진택;김창호;이용복
    • Tribology and Lubricants
    • /
    • 제24권3호
    • /
    • pp.140-146
    • /
    • 2008
  • The floating ring seal which is used in the high pressure turbo pump is frequently used in the oxidizer pump and the fuel pump of the turbo pump of the liquid propulsion rocket, because it is able to minimize clearance to decrease the leakage flow rate. But, the floating ring seal has a tendency to increase instability in decreasing eccentricity ratio. To complement this weakness, it is devised bump floating ring seal which is inserted bump in the outer surface. It has various experiment results. But the theoretical study of the bump floating ring seal didn't investigated yet. In this paper, we analyse about static characteristics of bump floating ring seal, compared previous experimental results. To analyze the characteristic of bump floating ring seal, we coupled perturbation method of floating ring seal and FEM of bump foil.

두 대의 펌프가 병렬로 설치된 장치의 유량 특성 (FLOW CHARACTERISTICS OF A SYSTEM WHICH HAS TWO PARALLEL PUMPS)

  • 박정근;박종호;박용철
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.1-8
    • /
    • 2012
  • During a reactor normal operation, two parallel 50% capacity cooling pumps circulate primary coolant to remove the fission reaction heat of the reactor through heat exchangers cold by a cooling tower. When one pump is failure, the other pump shall continuously circulate the coolant to remove the residual heat generated by the fuels loaded in the reactor after reactor shutdown. It is necessary to estimate how much flow rate will be supplied to remove the residual heat. We carried out a flow network analysis for the parallel primary pumps based on the piping network of the primary cooling system in HANARO. As result, it is estimated that the flow rate of one pump increased about 1.33 times the rated flow of one pump and was maintained within the limit of the cavitation critical flow.

열펌프의 난방운전시 핫가스 바이패스에 따른 성능 특성에 관한 실험적 연구 (An Experimental Study on the Performance Characteristics of a Heat Pump System in the Heating Operation Mode with the Hot Gas Bypass)

  • 안재환;주영주;조일용;강훈;김용찬;최종민
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.539-543
    • /
    • 2009
  • When the suction pressure of compressor decreases under its limit, the compression ratio is increased causing the malfunctions of compressor. As the method to decrease the compression ratio, hot gas bypass system is usually adopted in heat pump system. In the hot gas bypass system, the discharged gas from the compressor is bypassed into the compressor suction, which causes the increase of suction pressure and the decrease of compression ratio. In this study, the characteristics and performances of the hot gas bypass system in heat pump was investigated experimentally with a variation of the bypass flow rate ratio. With the increase of the bypass rate ratio, the compressor suction pressure was increased, even though the total capacity and COP was decreased. From the analysis of the experimental results, the optimum pressure control algorithm was suggested in this study.

  • PDF

Improvement of the Low-Speed Friction Characteristics of a Hydraulic Piston Pump by PVD-Coating of TiN

  • Hong Yeh-Sun;Lee Sang-Yul;Kim Sung-Hun;Lim Hyun-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.358-365
    • /
    • 2006
  • The hydraulic pump of an Electro-hydrostatic Actuator should be able to quickly feed large volume of oil into hydraulic cylinder in order to reduce the response time. On the other hand, it should be also able to precisely dispense small amount of oil through low-speed operation so that the steady state position control error of the actuator can be accurately compensated. Within the scope of axial piston type hydraulic pumps, this paper is focused on the investigation how the surface treatment of their cylinder barrel with TiN plasma coating can contribute to the reduction of the friction and wear rate of valve plate in the low-speed range with mixed lubrication. The results showed that the friction torque of the valve plate mated with a TiN coated cylinder barrel could be reduced to 22% of that with an uncoated original one when load pressure was 300 bar and rotational speed 100 rpm. It means that the torque efficiency of the test pump was expected to increase more than 1.3% under the same working condition. At the same time, the wear rate of the valve plate could be reduced to $40\sim50%$.

APR 1400급 원자로냉각재펌프의 회전체 진동평가에 관한 고찰 (Introduction of Vibration Evaluation for APR 1400 Reactor Coolant Pump Shaft)

  • 김익중;임도현;김민철;방상윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.110-115
    • /
    • 2014
  • The nuclear power plant was launched by Kori unit 1 in 1978 years. Currently, 23 nuclear power plants have been operating in Korea since 1978 years. The localization was completed for most of the reactor facility from Hanbit(Youngkwang) unit 3&4. However, RCP(Reactor Coolant Pump) and MMIS(Man Machine Interface System) is an important technology that has been excluded from the scope of the technical transfer has been dependent on a specific overseas vendor. Recent success in RCP development through co-operation with government and industries. Developed RCP will be applied to Shin-Hanul unit 1&2 nuclear power plants. The RCP operates in high speed and high pressure condition and only rotating component in the NSSS(Nuclear Steam Supply System). Therefore, the problem of vibration has arisen caused by the hydraulic forces of the working fluid. These forces can influence on the stability characteristics for entire RCS(Reactor Coolant System) loop, and can act as significant destabilizing forces. In this study, vibration evaluation of the pump shaft of development RCP estimated under normal operation and over speed conditions. In order to predict the vibration characteristics and dynamic behavior, modal analysis, critical speed analysis and unbalance response spectrum analysis were performed.

  • PDF

사판식 액셜 피스톤 펌프에서의 압력맥동 해석모형에 관한 연구 (A Study on Models for the Analysis of Pressure Pulsation in a Swash-Plate Type Axial Piston Pump)

  • 신정훈;김형의;김경웅
    • Tribology and Lubricants
    • /
    • 제27권6호
    • /
    • pp.314-320
    • /
    • 2011
  • Although swash-plate type axial piston pumps have the merits of wide operating conditions and high efficiency, the characteristics of pressure pulsation and flow ripple which result in system noise generation are on-going problems. This research examined the analytic models of the dynamic oil pressure and flow characteristics in the pump. A new mathematical model which considered the pressure behaviors of each cylinder and discharge piping was developed to analyze the pump pressure and flow. This model also considered the leakages in the clearances which many researchers have ignored so far. Using the developed model, numerical calculations were implemented. The results showed that widely used simple model which considered only a single cylinder can not predict actual discrete flow dynamics and that fluid inertia effect has to be considered in the mathematical model. Several critical parameters were discussed such as port volume and discharge resistance on the assumption that the pipe length is not so long. The effect of leakages was studied on the final stage.

원심 펌프 회전차 내부의 저 운동량 유동특성에 관한 수치적 연구 (Numerical Analysis on the Low Momentum Fluid Flow Characteristics in Centrifugal Pump Impeller)

  • 김세진;김동원;김윤제
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1999년도 춘계 학술발표회 논문집
    • /
    • pp.151-157
    • /
    • 1999
  • 원심 펌프내 3차원 유동 특성을 고찰하기 위하여 혼류형 원심펌프의 내부유동특성을 수치적 고찰하였다. 회전차 내의 유동현상에 대한 상세한 해석과 이해는 원심펌프의 주요 요소들에 대한 성능 예측에 있어 매우 중요하다. 회전차 내부의 유동은 3차원 점성효과가 지배적이기 때문에 펌프 성능에 중대한 영향을 준다. 회전차내의 3차원 점성유동은 주 영역인 등엔트로피 유동과 원심력과 Coriolis힘에 의한 경계층의 변화, 벽면의 전단응력, 2차 유동(secondary flow)등의 영향에 의한 비가역 영역으로 구분한다. 저 운동량 영역을 만드는 회진차 내부의 점성 유동은 정체영역(blockage)과 실속(stall)이라는 비가역 영역을 만들게 되는데, 결과적으로 펌프의 성능과 효율저하를 유발시킨다. 특히 Coriolis힘과 원심력은 비가역 영역을 증대시키는 가장 큰 힘이라는 사실을 알았다.

  • PDF

차량용 이산화탄소 열펌프 시스템의 냉난방 성능 비교평가 (Comparative Evaluation of the Cooling and Heating Performance of a $CO_2$ Heat Pump System for Vehicles)

  • 김성철;김민수
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.126-131
    • /
    • 2009
  • A $CO_2$ heat pump system was designed for both cooling and heating in the cabin of electric vehicles, hybrid vehicles or fuel cell vehicles, In this study, the performance characteristics of the heat pump system without any supplementary heating device were analyzed and the heating performance was compared with the cooling performance for various operating conditions. Experiments were carried out by changing the speed of electric drive compressor, the air flow rate of interior heat exchanger and the air inlet temperature and speed of exterior heat exchanger. Therefore, the cooling/heating capacities and the corresponding COPs are quantified. Also, the heat pump system showed an improved performance for the cooling operation and the heating operation. In this study, the experimental results can be used to evaluate the effect of system design changes on system performance as well as the development of a highly efficient heat pump system.

과냉각 열교환기 용량 변화에 따른 인젝션 히트펌프의 성능 특성 (Performance Characteristics of a Vapor Injection Heat Pump System with Different Sub-cooler Capacity)

  • 최종민;박용정;강신형
    • 한국지열·수열에너지학회논문집
    • /
    • 제10권3호
    • /
    • pp.17-23
    • /
    • 2014
  • One major breakthrough in the field of heating, ventilation and air conditioning has been the development of heat pumps. Heat pump systems offer economic alternatives for recovering heat from different sources for use in various industrial, commercial and residential applications. In recent years, the heat pump has been tipped to have a very good potential for hot water production. This paper investigated the performance of a vapor injection heat pump with the variation of sub-cooler capacity at heating mode. The heating capacity of the vapor injection heat pump slightly increased with an increment of sub-cooler capacity, while COP didn't increase continuously. The 20% capacity of sub-cooler comparing with system capacity could be used as a standard to select sub-cooler capacity.

Simulation on Hydraulic Control Characteristics of Regulator System in Bent-Axis Type Piston Pump

  • Kim, Jong Ki;Oh, Seok Hyung;Jung, Jae Youn
    • KSTLE International Journal
    • /
    • 제1권2호
    • /
    • pp.101-106
    • /
    • 2000
  • Variable displacement axial piston pumps are widely used for raising the energy level of the fluid in hydraulic systems. And the regulator is the device which regulates the discharge flow of the piston pump by controlling the swivel angle. The regulator receives the hydraulic pilot pressure and controls the pump output flow depending on the machine load and engine speed. This work deals with constant power control (horsepower control) in the design of a regulator by using a bent-axis type piston pump. In order to effectively use engine power, we must keep the horsepower from the engine to the pump constant. Therefore the regulator operates the constant power control. As a result, optimum power usage is obtained by accurately following the power hyperbola. This study focused on developing a simulation model of a regulator. First, the governing equations of the regulator are derived, and analysis is performed by computer simulation, which can identify significant parameters of regulator. As a result, the variation of the swivel angle, flow rate, hyperbolic curve, inner leakage and responsibility are simulated, and significant parameters of a regulator are identified.

  • PDF