• Title/Summary/Keyword: Pulverized Coal Boiler

Search Result 51, Processing Time 0.023 seconds

Evaluation on erosion resistance of STS304 by flyash (Flyash에 의한 STS304 재료의 내침식성 평가)

  • 박해웅;이의열
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.575-584
    • /
    • 2001
  • Erosion due to abrasive particles contained in gas streams from boilers has been emerged as a significant problem in the coal fired power plants. Particle erosion accounted for approximately 50% of boiler failures and especially flyash erosion was responsible for 20~30% of emergency boiler shutdowns. Particularly, because of the high ash loading and high velocity, most erosion occurs in the boiler tubes and economiser tube bank where the direction of the gas stream changes to $180^{\circ}$ .In this study, a high temperature particle erosion tester was used to evaluate erosion rate in a simulated environment. The erosion parameters such as erosion temperature, particle impact angle, particle velocity and various particle size were changed. Flyash is the combustion product of the pulverized coal, where size is ranging from 1 to $200\mu\textrm{m}$. Flyash composed of mainly SiO$_2$, $A1_2$$_O3$, and $Fe_2$$O_3$has dense spherical particles and irregular particles containing numerous pores and cavities. From the erosion tests at various conditions, the maximum erosion was experienced at impact angles of $30^{\circ}$ to $60^{\circ}$ In addition, erosion rate increased in proportional to velocity and temperature. And from the observation of the eroded surfaces, it was also concluded that 304 stainless steel was mainly eroded by extrusion-forging at high impact angle ($90^{\circ}$) and by microcutting mechanism at low impact angles ($30^{\circ}$ and $45^{\circ}$).

  • PDF

Computational Studies on the Combustion and Thermal Performance of the Coal Fired Utility Boiler : Temperature and Thermal Energy Distribution (석탄화력 보일러 연소열성능 해석 : 온도와 열에너지 분포를 중심으로)

  • Seo, Sang-Il;Park, Ho-Young;Lee, Sung-No
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.157-166
    • /
    • 2009
  • The pulverized coal combustion behavior in the coal fired utility boiler has been investigated with the CFD and process analysis techniques. The used commercial software were CFX and PROATES, and these were coupled each other to get more reliable boundary condition set-up, resulting in more reliable solution. For two cases which were the actual operation condition of A power plant, the calculated values from the coupled CFD and process analysis for thermal energy system were compared with the plant data, and the good agreements were obtained for Case 1 and 2. The calculated temperature distributions on the surface of heat exchangers were compared with the plant data for the steam temperatures across heat exchangers, and these explained the actual operating situation very well. The temperature deviation across the final superheater tube, which was believed to be the main cause of the frequent tube failure, were also explained very well with the calculated distributions of gas temperature and radiation on the plane of the final superheater.

Studies on the clinker formed in thermal power plants (화력발전소에서 생성된 크링커에 대한 연구)

  • Park, Hyun-Joo;Nam, Chang-Hyun;Yun, Yeo-Chan;Lee, Tae-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.34-40
    • /
    • 2003
  • Analyses for concentration, surface phenomena, and crystal structure were performed to identify the causes of clinker formation in three type of pulverized coal fired boilers. Some clinkers had partially molten surface and more CaO and $Fe_2O_3$ as compared with fly ash, and the major crystalline phases identified in the clinker were mullite and quartz. Clinkers were formed in high temperature zone of the boiler according to the identification of mullite by XRD. Free $SiO_2$ in sand combined with K, Na and Ca in limestone served as a fluxing agent to form clinkers in a circulating bed boiler.

  • PDF

Characteristics of Various Ranks of Coal Gasification with $CO_2$ by Gas Analysis (가스분석을 이용한 석탄 종류별 $CO_2$ 가스화 반응특성 연구)

  • Kim, Yong-Tack;Seo, Dong-Kyun;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.41-49
    • /
    • 2010
  • Various coals from many countries around the world have been used for pulverized coal boiler in power plants in Korea. In this study, the gasification reactivities of various coal chars with $CO_2$ were investigated. Carbon conversion was measured using a real time gas analyzer with NDIR CO/$CO_2$ sensor. In a lab scale furnace, each coal sample was devolatilized at $950^{\circ}C$ in nitrogen atmosphere and became coal char and then further heated up to reach to a desired temperature. Each char was then gasified with $CO_2$ under isothermal conditions. The reactivities of coal chars were investigated at different temperatures. The shrinking core model (SCM) and volume reaction model(VRM) were used to interpret the experiment data. It was found that the SCM and VRM could describe well the experimental results within the carbon conversion of 0-0.98. The gasification rates for various coals were very different. The gasification rate for any coal increased as the volatile matter content increased.

Status and Perspective of Biomass Co-firing to Pulverized Coal Power Plants (미분탄 석탄화력발전에서의 바이오매스 혼소 동향 및 전망)

  • Yang, Won
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.525-529
    • /
    • 2016
  • Biomass co-firing to existing thermal power plants is one of the most economical and efficient way to reduce $CO_2$ emission from the plant. There are several methods of co-firing and it can be categorized into (1) Parallel co-firing, (2) Indirect co-firing, and (3) Direct co-firing. Parallel co-firing is the most expensive way to high-ratio co-firing because it requires biomass dedicated boiler. Direct co-firing is widely used because it does not need high capital cost compared with the other two methods. Regarding the direct co-firing, it can be classified into three methods- Method 1 does not need retrofit of the facilities because it uses existing coal mills for pulverizing biomass fuels. In this case high-ratio co-firing cannot be achieved because of poor grindability of biomass fuels. Method 2 needs biomass-dedicated mills and revision of fuel streams for the combustion system, and Method 3 needs additional retrofit of the boiler as well as biomass mills. It can achieve highest share of the biomass co-firing compared with other two methods. In Korea, many coal power plants have been adopting Method 1 for coping with RPS(Renewable portfolio standards). Higher co-firing ratio (> 5% thermal share) has not been considered in Korean power plants due to policy of limitation in biomass co-firing for securing REC(Renewable Energy Certificate). On the other hand, higher-share co-firing of biomass is widely used in Europe and US using biomass dedicated mills, following their policy to enhance utilization of renewable energy in those countries. Technical problems which can be caused by increasing share of the biomass in coal power plants are summarized and discussed in this report. $CO_2$ abatement will become more and more critical issues for coal power plants since Paris agreement(2015) and demand of higher share of biomass in the coal power plants will be rapidly increased in Korea as well. Torrefaction of the biomass can be one of the best options because torrefied biomass has higher heating value and grindability than other biomass fuels. Perspective of the biomass torrefaction for co-firing is discussed, and economic feasibility of biomass torrefaction will be crucial for implementation of this technology.

The Development of Pulverized Coal(PC) Flow-Meter using Capacitance (정전용량을 이용한 미분탄 유량계의 개발)

  • Gim, Jae-Hyeon;Lee, Yong-Sik;Hwang, Keon-Ho;Jeong, Sung-Won;Yeo, Jun-Ho;So, Ji-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.61-67
    • /
    • 2008
  • In this papar, the flow meter system for pulverized coal is developed for the pulverizer-burner system of the boiler or the blast furnace. The sensor of the system a lied the capacitance with a pair of electrode on the outer wall of the electric insulator pipe. The circuit is designed for the measurement of the granule flow density combining as a measuring electrode and a reference. In order to measure granule-flow density, the calibration curve between the weight measured from loadcell and the voltage from the circuit is created. It is verified that the flow meter system has reliability and accuracy using on-line test.

The design method of overheat protection orifice for power plant boiler super heated tube (발전용 보일러 주증기 튜브 과열방지용 오리피스 설계기법)

  • Kim, Bum-Shin;Yoo, Seong-Yeon;Ha, Jung-Su;Kim, Eui-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.373-378
    • /
    • 2003
  • It is important that overheat protection of super heated tube in boiler operation and maintenance. The overheat of super heat tube can make damage and rupture of tube material, which causes accidental shutdown of boiler. The super heated tube overheat is almost due to the lack of uniformity of gas temperature distribution. There are two ways to protect overheat of super heated tube. The one is to control hot gas operation pattern which is temperature or flow distribution. the other is to control super heated steam flow distribution. The former is difficult than the later, because of control device design. In this paper steam flow control method which uses orifices is proposed to protect overheat of super heat tube.

  • PDF

Numerical Study of the Optimization of Combustion and Emission Characteristics of Air-Staged Combustion in a Pulverized Coal-Fired Boiler (석탄 화력 보일러의 공기 다단공급방식을 통한 연소 및 배기 배출물 특성 최적화에 관한 수치해석 연구)

  • Yoon, Min-Ji;Lee, Byoung-Hwa;Song, Ju-Hun;Kim, Gyu-Bo;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.587-597
    • /
    • 2010
  • Air-staged combustion is known to be one of the techniques of NOx reduction. The objective of this study is to determine the optimal ratio of air flow distributed for CCOFA and SOFA; at this optimal ratio, the combustion and exhaust emission characteristics of a pulverized coal-fired boiler are maintained at a satisfactory level. A numerical investigation was performed at various airflow ratios of 16.7/83.3%, 25/75%, 50/50%, 75/25%, and 83.3/16.7%. An inert gas was considered as a substitute for air to isolate the effects of the cooling process and chemical reaction on NOx reduction; during NOx reduction in air-staged combustion, both the effects typically occur simultaneously. The results of our study show that the optimum condition, under which the maximum NOx reduction and highest boiler efficiency can be obtained, corresponds to the equal splitting of the over-fire air between CCOFA and SOFA.

Application and Verification of Cold Air Velocity Technique for Solving Tube Ash Erosion Problem in PC Boilers (석탄화력발전소 보일러 튜브 마모 문제에 관한 저온공기 속도 측정법 적용 및 검증)

  • Yoo, Ki-Soo;Jeong, Kwon-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.663-668
    • /
    • 2012
  • Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue-gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong #2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated.

The Biomass Pre-treatment Effect on the Combustion Characteristics of Coal and Biomass Blends (바이오매스 전처리 기술에 따른 혼소 특성에 관한 실험적 연구)

  • KIM, JONG-HO;PARK, KYEONG-HOON;KIM, GYEONG-MIN;PARK, KYEONG-WON;JEONG, TAE-YONG;LEE, YOUNG-JOO;JEON, CHUNG-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Fuel blend technique is one of the most effective way of using biomass to replace the coal. Many studies on combustion characteristics with coal and biomass blends have been conducted. In this study, char reactivity and emission characteristics of coal (Suek) and biomass (EFB) blends has been investigated by TGA and DTF to evaluate the applicability of the pre-treated (torrefaction, ash removal technology) EFB to pulverized coal boiler. In all blending cases, char reactivity improved as the blending ratio increases (10, 20, and 30%), especially torrefied EFB blended at 30%. Also, unburned carbon decreased as the blending ratio increases in all types of EFB. NOx emission showed the increase and decrease characteristics according to the content of fuel-N of raw EFB and torrefied EFB. But the amount of NOx emission at ashless EFB blends is greater than that of Suek despite of lower fuel-N. It indicated that co-firing effect of using the pretreatment biomass fuel is relatively better than those of the untreated biomass fuel about char reactivity and emission characteristics.