• Title/Summary/Keyword: Pulsing pressure

Search Result 21, Processing Time 0.03 seconds

A bond graph approach to energy efficiency analysis of a self-powered wireless pressure sensor

  • Cui, Yong;Gao, Robert X.;Yang, Dengfeng;Kazmer, David O.
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-22
    • /
    • 2007
  • The energy efficiency of a self-powered wireless sensing system for pressure monitoring in injection molding is analyzed using Bond graph models. The sensing system, located within the mold cavity, consists of an energy converter, an energy modulator, and a ultrasonic signal transmitter. Pressure variation in the mold cavity is extracted by the energy converter and transmitted through the mold steel to a signal receiver located outside of the mold, in the form of ultrasound pulse trains. Through Bond graph models, the energy efficiency of the sensing system is characterized as a function of the configuration of a piezoceramic stack within the energy converter, the pulsing cycle of the energy modulator, and the thicknesses of the various layers that make up the ultrasonic signal transmitter. The obtained energy models are subsequently utilized to identify the minimum level of signal intensity required to ensure successful detection of the ultrasound pulse trains by the signal receiver. The Bond graph models established have shown to be useful in optimizing the design of the various constituent components within the sensing system to achieve high energy conversion efficiency under a compact size, which are critical to successful embedment within the mold structure.

Filtration Characteristics of Paticulate Matter at Bag Filters Coated with PTFE Membrane During Off-Line Pulsing (PTFE membrane이 코팅된 여과백의 off-line 탈진시 미세먼지 집진 특성)

  • Kim, Joung-Hun;Moon, Il-Shik;Hwang, Min-Young;Kim, Ryang-Gyoon;Ko, Daekwun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.391-402
    • /
    • 2017
  • Particulate matter becomes an important issue in the environmental society recently so that it is necessary to evaluate that the commercial application of baghouse systems for effective control of fine particulates is viable. A laboratory-scale baghouse experimental apparatus with filter bags made of PTFE felt or PTFE felt coated with PTFE membrane is used to investigate the filtration performances of fine particulates. Experiments by changing filtration velocity, inlet dust concentration, and average dust particle size show that the dust collection efficiency becomes higher at lower filtration velocity, higher inlet dust concentration and larger average dust particle size. The total pressure drop through the filter media and dust layer becomes higher at higher filtration velocity and higher inlet dust concentration. The dust collection efficiency is higher and the pressure drop is lower at a baghouse with filter bags coated with PTFE membrane than that without membrane coating. From the result that the dust collection efficiency of $PM_{2.5}$ in a reasonable filtration velocity range during off-line pulsing at a baghouse with PTFE felt bag filters coated with PTFE membrane is as high as 99.99%, it is confirmed that the use of baghouse is an effective measure to control the fine particulates.

A Study on the High Temperature Filtration Performance Test of Low Density Ceramic Filters (저밀도 세라믹 필터의 고온 여과 성능시험에 관한 연구)

  • 이동섭;홍민선;최종인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2001
  • Hot gas filtration method via using ceramic filters is an evolving technology applicable to numerous industrial and air pollution control processes. Alumino silicate, organic and inorganic binders were the major raw materials in manufacturing ceramic filters. In this work, disc type ceramic filters(50$\phi$$\times$10t) were manufactured by vacuum forming processes using ceramic raw materials. The porosity and bulk density of disc type ceramic filers ranged from 86 to 89% and from 0.27 to 0.36 g/㎤, respectively. In this work disc type ceramic medium were tested utilizing coupon experimental apparatus. Disc type filters showed high collection efficiencies over 99.96% with Darchs law coefficients of 4.1$\times$10(sup)10~9.63$\times$10(sup)10/$m^2$ depending on mean pore sizes. In addition, filtration and detachment of ceramic filters turned out to be performed effectively using 10 cm/sec face velocity, 5 minutes filtration cycle, 100msec pulse jet valve opening time and 3 bar pulsing pressure.

  • PDF

Dynamic Analysis of Metal Transfer in Pulsed-GMAW (Pulsed-GMAW의 금속 이행 현상에 관한 동적 해석)

  • 최상균;유중돈;박상규
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.84-91
    • /
    • 1997
  • The metal transfer phenomenon of the pulsed-GMAW is simulated by formulating the electromagnetic force incorporated with the Volume of Fluid algorithm. The free surface profiles, pressure and velocity distributions within the drop are computed numerically. Axial velocity and acceleration generated during peak current period are found to have a significant effect on drop detachment. Therefore, the accelerated inertia force becomes one of important factors affecting metal transfer in the pulsed-GMAW. When the pulse current parameters are selected properly, the molten drop is detached just after current pulse, and the operating range of the pulsing frequency increases with higher peak current and duty cycle. Calculated operating ranges show reasonably good agreements with the available experimental data.

  • PDF

The Fundamental Study on Pulse Jet Cleaning of Rectangular Bag-Filter System (사각형 여과 집진기 충격기류 탈진시스템의 기초 연구)

  • Piao, Cheng Xu;Kim, Tae Hyeung;Yang, Jun Ho;Li, Xiao Yu;Ha, Hyun Chul;Jung, Jae Hun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.2
    • /
    • pp.149-160
    • /
    • 2008
  • Bag-filter system has been widely used in industrial field to remove the particulate matters from the exhaust gas. The cylindrical type of bag-filter has been generally used. But it has many shortcomings. The reattachment of separated particles on the surface of bags could result in high pressure drop of bag-filter system and subsequent decrease of air flow rate since the cylindrical type bag-filter system should have the upward flow pattern. In addition, the supply of very high pressure pulse air jet to remove particulate matters on the surface of filter could result in a frequent rupture of bags. To overcome these shortcomings of the cylindrical type, the rectangular type was developed in the developed countries and imported to Korea. But, there was not many design data available to understand the mechanisms. Thus, the fundamental experiments were conducted in this study to get some ideas about the pulse jet cleaning of rectangular type bag filter system. The experimental factors are as follows; pulse distance, pulse duration, pulse interval, pulse pressure and pulse nozzle type. Experiments followed the factorial design method. With the shorter pulse distance, the distribution of pressure drops was relatively not uniform while the particulate removal efficiency was higher. With the longer duration of pulsing and the more number of pulse nozzle, the removal efficiency was higher and the pressure drop distribution was more uniform.

Response of Open-ended Pipe Pile Foundation at Offshore Sites to Seaquake Induced by the Vertical Seismic Excitation of the Seafloor (해저면의 수직 지진 진동에 의해 유발된 해진에 대한 해상 개단 강관 말뚝 기초의 거동)

  • 최용규;남문석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • During an earthquake, there are three main components of excitation : horizontal excitation of the ground, vertical excitation of the pile due to superstructure feedback produced by vertical excitation of the ground, and the seawater excitation induced by the vertical ground shaking, that is, "the seaquake." These excitations could have effects on the soil plugs in open-ended pie piles installed at offshore sites. In this study, seaquake excitation induced by the vertical ground shaking was simulated by pulsing the water pressure at the seabed. During a seaquake, due to the induced excess porewater pressure and pressure gradients in the soil, the capacity of open-ended pipe piles installed in a simulated sea depth of greate than 220 m was reduced serevely and the soil plugging resistance was degraded by more than 80% The soil plug was failed because of eh upward seepage forces that developed in the soil plug due to excess pore water pressure produced in the bottom of the soil plug during the seaquake, The compressive capacity of ar open-ended pile in a simulated sea depth of less than 220 m was reduced only by about 10% and the soil plug resistance was degraded by less than 5%.s than 5%.

  • PDF

Algorithm for reduction of motion artifact generated in SpO2 measurement (산소포화도(SpO2) 측정시에 발생되는 motion artifact를 reduction하는 algorithm)

  • 한승헌;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.860-863
    • /
    • 2003
  • Pulse oximetry has gained wide spread clinical acceptance in the latter part of the 21st century. The principle of pulse oximetry is based on the red and infrared light absorption features and uses a light emitter with red and infrared LEDs that shines through a reasonably translucent site with good blood flow. There are two methods of sending light through the measuring site : transmission and reflectance. After the transmitted red and infrared signals pass through the measuring site and received at the photodetector, the red/infrared ratio is calculated. But, pulse of oximeters are so sensitive that they may detect pulses when pressure is too low to provide adequate tissue blood flow, that is, SpO2 may decrease due to O2 consumption by the finger of the pulsing but stagnant arterial blood at low pressure or with vasoconstriction. This project has the limitations of pulse oximetry. Therefore, this paper is focused on the resuction of motion artifact that caused by moving when someone measures with SpO2 system.

  • PDF

Porewater Pressure Buildup Mode Induced in Near-field of Open-ended Pipe Pile during Earthquake and Sequake (지진과 해진시 개단강관말뚝 주변에 유발된 간극수압의 발생 양상)

  • 최용규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.23-30
    • /
    • 1998
  • During an earthquake, there are three components of excitation : horizontal excitation of the ground, vertical excitation of the pile due to superstructure feedback produced by vertical excitation of the ground, and the seawater excitation by the vertical ground shaking, that is, "the seaquake." These excitations could have effects on the pore pressure buildup mode induced in the near-field of open-ended pile and the soil plugs in open-ended pipe piles installed at offshore sites. While the ground and pile excitation could be modeled by exciting the soil and pile with simulated motions, seaquake excitation induced by the vertical ground shaking can be modeled by pulsing the water pressure at the seabed. The objectives of this study were to observe buildup trend for the porewater pressures developed in near-field of open-ended pipe pile installed in the calibration chamber during the simulated earthquake and seaquake and, also to confirm the cause for reduction of soil plugging according to pore pressure buildup. During the simulated horizontal seismic motion, there was no upward flow through soil plug because the similar magnitude of excess porewater pressure were occurred at the top and under the toe of soil plug. During the horizontal seismic motion, relatively higher hydraulic gradients caused upward flow in the soil plug and then the degradation of plugging resistance was about 20%. During seaquake, in the case of the open-ended pile installed in a deep sea with more than 220m of water depth, soil plug failed completely because of high upward hydraulic gradients through soil plug.soil plug.

  • PDF

The Role of the Electroglottography on the Laryngeal Articulation of Speech (전기 Glottography(EGG)를 이용한 후두구음역학적 특성)

  • 홍기환;박병암;양윤수;서수영;김현기
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.8 no.1
    • /
    • pp.18-26
    • /
    • 1997
  • There are two types of phonetic study, acoustic and physiologic, for differentiating the three manner categories of Korean stop consonants. On the physiologic studies, there are endoscopic, electromyographic(EMG), electroglottographic(EGG) and aerodynamic studies. In this study, I tried to investigate general features of Korean stops using EGG study for the open quotient of vocal fold and baseline shift during speech, and aerodynamic characteristics for e subglottal air pressure, air flow and glottal resistance at consonants. On the aerodynamic study, the glottalized and aspirated stops may be characterized by e increasing subglottal pressure comparing with lenis stop at consonants. The airflow is largest in the aspirated stops followed by lenis stops and glottalized. The glottal airway resistance (GAR) showed highest in the glottalized followed by the lenis, but lowest in e aspirated during e production of consonants, and showed highest in e aspirated, but low in the glottalized and lenis during the production of vowel. The glottal resistance at consonant showed significant difference among consonants and significant interaction between subject and types of consonant. The glottal resistance at vowel showed significant difference among consonants, and e interaction occured between subject and types of consonant. The electroglottography(EGG) has been used for investigating e functioning of e vocal folds during its vibration. The EGG should be related to the patterns of the vocal fold vibration during phonation in characterizing the temporal patterns of each vibratory cycle. The purpose of this study is to investigate the dynamic change of EGG waveforms during continuous speech. The dynamic changes of EGG waveforms fir the three-way distinction of Korean stops were characterized that the aspirated stop appears to be characterized by largest open quotient and smallest glottal contact area of the vocal folds in e initial portion of vocal fold vibration ; the lenis stop by moderate open quotient and glottal contact area ; but the glottalized stop by smallest open quotient and largest glottal contact area. There may be close relationship between the OQ(open quotient) in the initial voice onset and the glottal width at the time of consonant production, the larger glottal width just before vocal fold vibration results in the smaller OQ of the vocal fold vibration in the initial voice onset. The EGG changes of baseline shift during continuous speech production were characterized by the different patterns for the three types of Korean consonants. The small and less stiffness change of baseline shift was found for the lenis and the glottalized, and the largest and stiffest change was found for the aspirated. On the baseline shift for the initial voice onset, they showed so similar patterns with for the consonant production, larger changed in the aspirated. for the lenis and the glottalized during the initial voice onset, three subjects showed individual difference each other. I suggest at s characteristics were strongly related with articulatory activity of vocal tract for the production of consonant, especially for the aspirated stop. The suspecting factors to affect EGG waveforms are glottal width, vertical laryngeal movement and the intrapharyngeal pressure to neighboring tissue during connected spech. So the EGG may be an useful method to describe laryngeal activity to classify pulsing conditions of the larynx during speech production, and EGG research can be controls for monitoring the vocal tract articulation, although above factors to affect EGG would have played such a potentially role on vocal fold vibratory behavior obtained using consonant production.

  • PDF

A Study of High Temperature Filtration Performance Test on Low Density Cylindrical Ceramic Filters (저밀도 원통형 세라믹 필터의 고온 여과 성능시험 연구)

  • 이동섭;홍민선;최종인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.213-222
    • /
    • 2001
  • Cylindrical type ceramic filers, that is 60 O.D$\times$10t$\times$600L and 60 O.D$\times$10t$\times$1,000L were manufactured by vacuum forming processes using ceramic ray materials. For cylindrical type ceramic filters, porosity and bulk density were measured for, 80 to 90% and 0.3 to 0.4 g/㎤, respectively at uniform pore size of 41 to 45${\mu}{\textrm}{m}$. Bench scale candle filters (60$\psi$ $\times$10t$\times$600L) were tested using different dusts collected from many industries including chemical processing, glass processing and metal manufacturing pants. Collection efficiencies found out to range from 99.87% to 99.90%, while resistance coefficients from 1.1$\times$10(sup)11/$m^2$ to 1.7$\times$10(sup)11/$m^2$ . Full scale low density ceramic filters (60$\psi$ $\times$10t$\times$1,000L) were also tested at 1 atm, $600^{\circ}C$ to reveal the filtration efficiency, conditioning, and resistance coefficients using two different types of dust as chemical processing and metal refined processing. Darcys law resistance coefficients were measured to range 1.44$\times$10(sup)11/$m^2$ to 2.74$\times$10(sup)11/$m^2$, and collection efficiencies on the range 99.84 to 99.96%, Finally, results of long term performance test showed that filters were conditioned after 170hrs. Experimental conditions for effective filtration were examined under the condition 10 cm/sec face velocity, 3kg/$\textrm{cm}^2$ pulsing pressure, 5 min filtration cycle, and 300msec pulse opening time.

  • PDF