• Title/Summary/Keyword: Pulsed-laser ablation

Search Result 128, Processing Time 0.021 seconds

Aluminum ignition in laser-generated aluminum particles in high temperature and high pressure environment (고온 고압 환경에서 레이저를 이용한 알루미늄 입자 생성과 점화)

  • Lee, Kyung-Cheol;Taira, Tsubasa;Koo, Goon Mo;Lee, Jae Young;Park, Jeong Su;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.101-103
    • /
    • 2012
  • Characteristic of aluminum ignition under high temperature and high pressure is studied using lasers. The laser ablation method is used to generate aluminum particles exposed to a high pressure by using a nanosecond pulsed laser where the range of ablation pressure varies between 0.35 and 2.2 GPa. A $CO_2$ laser is used to supply radiative heat to the aluminum target surface for providing high temperature ranging between 5000~9300 Kelvin. The ignition is confirmed using spectroscopy analysis of AlO vibronic band 484 nm wavelength. Also the radiative temperature is measured in various high pressure range for tracing the ignition temperature in high pressure conditions.

  • PDF

Temporal Evolution and Ablation Mechanism of Laser-induced Graphite Plume at 355 nm

  • 최영구;임훙선;정광우
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1501-1505
    • /
    • 1999
  • Expansion dynamics of C$^{+}$ ions ejected from 355-nm laser ablation of graphite target in vacuum has been investigated by pulsed-field time-of-flight (TOF) mass spectrometry. A strong nonlinear dependence of the amount of desorbed C$^{+}$ ions on laser fluence is interpreted by the mechanism that C$^{+}$ ions are produced directly from the graphite via conversion of the multiphoton energy into thermal energy. The temporal evolution of C$^{+}$ ions was measured by varying the delay time of the ion repelling pulse with respect to the laser irradiation, which provides significant information on the ablated plume characterization. The TOF distributions of ablated ions showed a bimodal shape and could be fitted by shifted Maxwell-Boltzmann distributions. The velocity of the fast component increases with the delay time, whereas the slow component (< 500 m/s) exhibits a constant velocity. Also studied were the effects of the laser fluence on the energetics of C$^{+}$ ions.

Synthesis of Ni-MWCNT by pulsed laser ablation and its water splitting properties (레이저 어블레이션 공정에 의한 Ni-MWCNT 합성 및 물분해 특성)

  • Cho, Kyoungwon;Chae, Hui Ra;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.77-82
    • /
    • 2022
  • Recently, research on the development of low-cost/high-efficiency water electrolysis catalysts to replace noble metal catalysts is being actively conducted. Since overvoltage reduces the overall efficiency of the water splitting device, lowering the overvoltage of the oxygen evolution reaction (OER) is the most important task in order to generate hydrogen more efficiently. Currently, noble metal catalysts show excellent characteristics in OER performance, but they are experiencing great difficulties in commercialization due to their high price and efficiency limitations due to low reactivity. In this study, a water electrolysis catalyst Ni-MWCNT was prepared by successfully doping Ni into the MWCNTs structure through the pulsed laser ablation in liquid (PLAL) process. High resolution-transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS) were performed for the structure and chemical composition of the synthesized Ni-MWCNT. Catalytic oxygen evolution reaction evaluation was performed by linear sweep voltammetry (LSV) overvoltage characteristics, Tafel slope, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and Chronoamperometry (CA) was used for measurement.

Laser Ablation of a ZnO:P2O5 Target under the Presence of a Transverse Magnetic Field

  • Alauddin, Md.;Park, Jin-Jae;Gwak, Doc-Yong;Song, Jae-Kyu;Park, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.798-802
    • /
    • 2010
  • From time-resolved optical emission spectra, we have investigated the effects of a transverse magnetic field on the expansion of a plasma plume produced by laser ablation of a ZnO:$P_2O_5$ ceramic target in oxygen active atmosphere. The emission spectra of $Zn^{+*}$, $P^{+*}$, and $Zn^*$ neutrals in the presence of magnetic field turn out to be considerably different from those without magnetic field. The characteristics of the deposited films grown on amorphous fused silica substrates by pulsed laser deposition (PLD) are examined by analyzing their photoluminescence (PL), X-ray diffraction (XRD), and UV-visible spectra.

Shock Compression of Metal using High Energy Laser and Innovative Applications (고 에너지를 이용한 충격파 발생과 응용)

  • Lee, Hyun-Hee;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.353-357
    • /
    • 2007
  • We have been setting up experiments on propagation of shock waves generated by the pulsed laser ablation. One side of a thin metal foil is subjected to laser ablation as a shock wave propagates through the foil. The shock wave, which penetrates through the foil is reflected by an acoustic impedance which causes the metal foil to high-strain rate deform. This short time physics is captured on an ICCD camera. The focus of our research is applying shock wave and deformation of the thin foil from the ablation to accelerating micro-particles to a very high speed.

  • PDF

Fabrication of $(Pb,La)TiO_3$ Thin Films by Pulsed Laser Ablation (레이저 어블레이션에 의한 $(Pb,La)TiO_3$ 박막의 제작)

  • Park, Jeong-Heum;Kim, Joon-Han;Lee, Sang-Yeol;Park, Chong-Woo;Park, Chang-Yub
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.133-137
    • /
    • 1998
  • $(Pb_{0.72}La_{0.28})Ti_{0.93}O_3(PLT(28))$ thin films were fabricated by pulsed laser deposition. PLT films deposited on $Pt/Ti/SiO_2/Si$ at $600^{\circ}C$ had a preferred orientation in (111) plane and at $550^{\circ}C$ had a (100) preferred orientation. We found that (111) preferred oriented films had well grown normal to substrate surface. This PLT(28) thin films of $1{\mu}m$ thickness had dielectric properties of ${\varepsilon}_r$=1300, dielectric $loss{\fallingdotseq}0.03 $. and had charge storage density of 10 [${\mu}C/cm^2$] and leakage current density of less than $10^{-6}[A/cm^2]$ at 100[kV/cm]. These results indicated that the PLT(28) thin films fabricated by pulsed laser deposition are suitable for DRAM capacitor application.

  • PDF

Magnetic Properties of $Nd_xFe_{90.98-x}B_{9.02}$ Thin Films Grown by a KrF Pulsed Laser Ablation Method (KrF Pulsed Laser Ablation 법으로 제조한 $Nd_xFe_{90.98-x}B_{9.02}$ 박막의 자기특성)

  • 김상원;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.6
    • /
    • pp.299-307
    • /
    • 1997
  • NdFeB films have been grown onto Si(100) substrate by a KrF pulsed laser ablation of the targets of $Nd_xFe_{90.98-x}B_{9.02}$ (x=17.51~27.51) at the substrate temperature of 620~700 $^{\circ}C$ and the laser beam energy density of 2.75~5.99 J/$\textrm{cm}^2$. The films exhibit no preferred orientation, however, good hard magnetic properties were produced from as-deposited condition : $4{\pi}M_s$=7 kG, $4{\pi}M_r$=4 kG, and $H_c$=300~1000 Oe. The depositon rate was not greatly influenced by changing the substrate temperature, but it increases linearly by increasing the beam energy density. The beam energy density of 3 J/$\textrm{cm}^2$ gave the optimal condition to have the highest $4{\pi}M_r$ and $H_c$ as well. The higher content of Nd induces a higher coercivity and $4{\pi}M_r$ at the same time without prominent change in $4{\pi}M_s$.

  • PDF

Characteristics of the Femto-second Pulsed Laser Ablation according to Feed Velocity on the Invar Alloy (펨토초 레이저의 이송속도에 따른 Invar 합금의 어블레이션 특성)

  • Chung, Il-Young;Kang, Kyung-Ho;Kim, Jae-Do;Sohn, Ik-Bu;Noh, Young-Chul;Lee, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.25-31
    • /
    • 2009
  • Femto-second laser ablation with the various feed velocities of the Invar alloy and the micro surface milling for the processing condition were studied. We used a regenerative amplified Ti:sapphire laser with a 1kHz repetition rate, 184fs pulse duration time and 785nm wavelength. Femto-second laser pulse was irradiated on the Invar alloy with the air blowing at the condition of various laser peak powers and feed velocities. An ablation characteristic according to feed velocity of the Invar alloy was appeared as the non-linear type at different zone of energy fluence. The micro surface milling of the Invar alloy using a mapping method was investigated. The optimal condition of micro surface milling was laser peak power of 22.8mW, feed velocity of 1 mm/s, beam gap of $1{\mu}m$. With the optimal processing condition, the fine rectangular shape without burr and thermal damage was achieved. Using the femto-second laser system, it demonstrates excellent tool for micro surface milling of the Invar alloy without heat effects and poor edge.

Deposition of Polytetrafluoroethylene Thin Films by IR-pulsed Laser Ablation (Nd:YAG 레이저에 의한 폴리테트라플루오르에틸렌 박막 증착)

  • Park Hoon;Seo Yu-Suk;Hong Jin-Soo;Chae Hee-Baik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2005
  • PTFE (polytetrafluoroethylene) thin films were prepared from the pellets of the graphite doped PTFE via pulsed laser ablation with 1064 nm Nd:YAG laser. The graphite powder converts the absorbed photon energy into thermal energy which is transmitted to nearby PTFE. The PTFE is decomposed by thermal process. The deposited films were transparent and crystalline. SEM (scanning electron microscopy) and AFM (atomic force microscopy) analyses indicated that the film surface morphology changed to fibrous structure with increasing thickness. The fluorine to carbon ratios of the film were 1.7 and molecular axis was parallel with (100) Si-wafer substrate. These results obtained by XPS (X-ray photoelectron spectroscopy), FTIR (fourier transform infrared spectroscopy) and XRD (X-ray diffraction).

  • PDF

Application of Micromachining in the PLC Optical Splitter Packaging

  • Choi, Byoung-Chan;Lee, Man-Seop;Choi, Ji-Hoon;Park, Chan-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.166-173
    • /
    • 2003
  • This paper presents micromachining results on planar-lightwave-circuit (PLC) chips with Si substrate and the quartz substrate by using Ti:Sapphire femtosecond-pulsed laser. The ablation process with femtosecond laser pulses generates nothing of contamination, molten zone, microcracks, shock wave, delamination and recast layer. We also showed that the micromachine for PLC using femtosecond pulsed lasers is superior to that using nanosecond pulsed lasers. The insertion loss and the optical return loss of the 1 ${\times}$ 8 optical power splitters packaged with micromachined input- and output-port U-grooves were less than 11.0 ㏈ and more than 55 ㏈, respectively. The wavelength dependent loss (WDL) was distributed within $\pm$0.6 ㏈ and the polarization dependent loss (PDL) was less than 0.2 ㏈.