• Title/Summary/Keyword: Pulsed electromagnetic field (PEMF)

Search Result 16, Processing Time 0.019 seconds

The Effects of Pulsed Electromagnetic Field on Functional Recovery and Expression of GAP-43 after Incomplete Spinal Cord Injury in Rats (맥동전자장이 불완전 척수손상 흰쥐의 기능회복과 GAP-43의 발현에 미치는 영향)

  • Bang, Hyun-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.3
    • /
    • pp.349-356
    • /
    • 2012
  • Purpose : This study was designed to investigate the effects of pulsed electromagnetic field on functional recovery and expression of GAP-43 after incomplete spinal cord injury (SCI) in rats. Methods : To confirm the damage of SCI and effects of pulsed electromagnetic field, 20 Sprague-Dawley male rats were used and divided randomly 2groups (SCI, PEMF). Incomplete SCI was induced by using modified NYU drop model. After operation, functional recovery test, immunohistochemistry and western blot analysis were measured at 1, 2, 3 weeks. Pulsed electromagnetic field were apply three weeks (one times a day, five days a week and twenty minutes a session). Results : In the this study, applications of pulsed electromagnetic field after incomplete SCI induced the significant improvement in functional recovery and expression of neurotrophic factor. The results were as follows; Foot print test, PEMF were significantly decreased than the SCI (p<.05). Expression of GAP-43, PEMF were significantly increased than the SCI at 2 and 3 weeks (p<.05). Conclusion : In conclusion, pulsed electromagnetic field were positive effect in functional recovery and expression of GAP-43 after incomplete SCI in rats.

Pulsed Electromagnetic Field Stimulators Efficacy for Noninvasive Bone Growth in Spine Surgery

  • Fiani, Brian;Kondilis, Athanasios;Runnels, Juliana;Rippe, Preston;Davati, Cyrus
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.486-494
    • /
    • 2021
  • The growth of pulsed electromagnetic field (PEMF) therapy and its progress over the years for use in post-operative bone growth has been revolutionary in its effect on bone tissue proliferation and vascular flow. However, further progress in PEMF therapy has been difficult due to lack of more evidence-based understanding of its mechanism of action. Our objective was to review the current understanding of bone growth physiology, the mechanism of PEMF therapy action along with its application in spinal surgery and associated outcomes. The authors of this review examined multiple controlled, comparative, and cohort studies to compare fusion rates of patients undergoing PEMF stimulation. Examining spinal fusion rates, a rounded comparison of post-fusion outcomes with and without bone stimulator was performed. Results showed that postoperative spinal surgery PEMF stimulation had higher rates of fusion than control groups. Though PEMF therapy was proven more effective, multiple factors contributed to difficulty in patient compliance for use. Extended timeframe of treatment and cost of treatment were the main obstacles to full compliance. This review showed that PEMF therapy presented an increased rate of recovery in patients, supporting the use of these devices as an effective post-surgical aid. Given the recent advances in the development of PEMF devices, affordability and access will be much easier suited to the patient population, allowing for more readily available treatment options.

Pulsed Ultrasound and Pulsed Electromagnetic Field in the Treatment of Muscle Contusion in Rats

  • Cheon, Song-Hee;Lee, Sun-Min
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.225-228
    • /
    • 2012
  • Muscle contusion usually results from a direct blunt impact and is frequently associated with contact sports. Muscle contusion results from microscopic muscle fiber and capillary disruption causing a microhemorrhage dissecting torn fibers and remaining viable muscle fibers. Recent studies concluded that some physical methods, including pulsed ultrasound (PU) and pulsed electromagnetic field (PEMF) treatment, accelerate and facilitate wound healing, improve scar quality and have beneficial effects on muscle and tendon healing. However, there are few studies on the effects of the early use of physical methods, such as PU and PEMF, on the expression of neurotrophic factors. The objective of this study was to investigate the effects of the early application of PU and PEMF, measured through the expression of BDNF in the muscles (gastrocnemius) and spinal cords of rats after skeletal muscle contusion. In the spinal cords and muscles, there was a significant increase of BDNF expression in the PEMF and PU groups, a greater increase was found in the PEMF group than in the PU group. In conclusion, PEMF is a useful therapeutic method that improves muscle healing after muscle contusion.

A STUDY OF EFFECT OF PULSED ELECTROMAGNETIC FIELDS ON OSTEOGENESIS IN RABBIT CRANIAL BONE DEFECT (가토 두개부 골결손에서 맥동전자기장이 골형성에 미치는 영향에 관한 연구)

  • Hwang, Kyung-Gyun;Lee, Jong-Hwan;Kim, Myung-Jin;Shim, Kwang-Sup;Kim, Jong-Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.4
    • /
    • pp.264-273
    • /
    • 2002
  • Pulsed electromagnetic field (PEMF) was used first to induce osteogenesis in 1974. The appliance which was consisted of the Helmholtz coil configuration have used to osteogensis. The objective of this study was to determine whether PEMF, a frequency of 100 Hz and magnetic field strength of 38 gauss applied to the calvarial defect in rabbit, could affect the induction of osteogenesis and the healing of the graft bone. This field should not produce excitation of nerve or muscle and heating the tissue. To evaluate the effect of PEMF on osteogenesis, 16 rabbit under the same condition was divided into 8 experimental groups and 8 control groups. 10 mm calvarial bone defects were formed around sagittal suture. The defect of left side was left without graft while the defect of right side was grafted by bone harvested from left side. A pulsed electromagnetic field was applied for 8 hours per day. Each group was sacrificed after 1 week, 2 weeks, 4 weeks, 8 weeks. Microscopic specimens were obtained from the calvarial bone defects and surrounding tissue using Hematoxylin-Eosin staining method. The results were as follows. 1. In the group which pulsed electromagnetic field was applied, new bone formation filled up the defect was observed after 4 and 8 weeks effectively. 2. There are no difference in the healing period for the fusion between the bone and graft bone. According to the result, the PEMF with 38 Gauss, 100 Hz was very effective in the healing of bone defect and new bone formation. So The PEMF will be useful in clinical aspect for oseteogenesis.

IME EFFECT OF PULSED ELECTROMAGNETIC FIELD ON THE CULTURED CALVARIAL CELLS OF RAT (맥동 전자기장이 백서의 배양 두개관세포에 미치는 영향)

  • Choi, Byung-Taek;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.20 no.3 s.32
    • /
    • pp.499-517
    • /
    • 1990
  • Electrical stimulation among several factors that influence bone remodeling has been studied by many investigators with great enthusiasm in orthodontic field. The action mechanisms of Pulsed Electromagnetic Field (PEMF) are different from those of the conventional electrode application method in that PEMF induces endogenous current in the living tissues. PEMF is known to have the healing effect in nonunion of bone and osteoporosis. It is widely used in orthopaedic scopes and the possibility of using the method in clinical orthodontics Is also conceivable. But the exact mechanisms by which the PEMF exerts its effects are not clearly understood. Therefore, the author wanted to see the effect of PEMF on five groups of rat calvarial cells obtained by sequential enzyme digestion method, and observed the changes in enzyme activation, collagen synthesis and $^3H-thymidine$ incorporation. The results were as follows: 1. Under the effect of PEMF, there were no changes in the alkaline phosphatase activity in five groups of cell populations. 2. Both the PEMF group and the PTH with PEMF group shelved no changes in acid phosphatase activities and there were no differences between two experimental groups. 3. Under the effect of PEMF, there was significant increase of collagen synthesis in the group V cell population. 4. Under the effect of PEMF, there were significant increases of $^3H-thymidine$ incorporation in the group IV and V cell populations.

  • PDF

Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells (맥동 전자기장 처리에 의한 독소루비신 유도 유방암 세포 생존저하 촉진)

  • Sung-Hun WOO;Yoon Suk KIM
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • A pulsed electromagnetic field (PEMF) enhances the efficacy of several anticancer drugs. Doxorubicin (DOX) is an anticancer agent used to treat various malignancies, including breast cancer. This study examined whether a PEMF increases the anticancer effect of DOX on MCF-7 human breast cancer cells and elucidated the underlying mechanisms affected by PEMF stimulation in DOX-treated MCF-7 human breast cancer cells. A cotreatment with DOX and a PEMF potentiated the reduction in MCF-7 cell viability compared to the treatment with DOX alone. The PEMF elevated DOX-induced G1 arrest by affecting cyclin-dependent kinase 2 phosphorylation and the expression of G1 arrest-related molecules, including p53, p21, cyclin E2, and polo like kinase 1. In addition, PEMF increased the DOX-induced upregulation of proapoptotic proteins, such as Fas and Bcl-2-associated X, and the downregulation of antiapoptotic proteins, including myeloid leukemia 1 and survivin. PEMF promoted the DOX-induced activation of caspases-8, -9, and -7 and poly (adenosine diphosphate-ribose) polymerase cleavage in MCF-7 cells. In conclusion, PEMF enhances the anticancer activity in DOX-treated MCF-7 breast cancer cells by increasing G1 cell cycle arrest and caspase-dependent apoptosis. These findings highlight the potential use of a PEMF as an adjuvant treatment for DOX-based chemotherapy against breast cancer.

The Effect of a Pulsed Electromagnetic Field with Time on Pain in Muscle Crushed Rat Model

  • Kim, Min-Hee;Cheon, Song-Hee
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.68-71
    • /
    • 2012
  • Acute injuries to skeletal muscles can lead to significant pain and disability. Muscle pain results in muscle weakness and range of motion (ROM) decreases. Pulsed electromagnetic fields (PEMF) promote tissue repair, healing rates and reduce musculoskeletal pain. The results of many previous studies suggest that PEMF can contribute to chronic pain reduction, particularly in musculoskeletal injurys. However, we do not have enough information of its effects compared to a placebo. The principal objective of this study was to investigate differences in acute pain induced by the direct destruction of muscle tissue (extensor digitorum) with varying times of the application of PEMF, measured through the expression of c-fos on the spinal cord. Significant reduction of pain was found in groups exposed to PEMF and the group exposed to PEMF immediately after muscle injury showed the most significant differences. In conclusion, PEMF may be a useful strategy in reducing acute pain in muscle injury.

The Influences of Pulsed Electromagnetic Field Treatment Following Experimentally Induced Delayed-Onset Muscle Soreness in Biceps Brachii (펄스자기장이 위팔 두갈래근의 지연성 근육통에 미치는 영향)

  • Kang, Sun-Young;Park, Joo-Hee;Jeon, Hye-Seon;Lee, Hyun-Sook
    • Physical Therapy Korea
    • /
    • v.20 no.2
    • /
    • pp.11-19
    • /
    • 2013
  • Delayed onset muscle soreness (DOMS) is a painful condition that arises from exercise-induced muscle damage after unaccustomed physical activities. Various therapeutic interventions have been applied to reduce the intensity and duration of DOMS-related symptoms. Recently, pulsed electromagnetic field (PEMF) intervention has been introduced as an alternative noninvasive treatment for DOMS. This randomized, double-blind, placebo-controlled experiment was conducted to examine the effects of PEMF therapy on DOMS in elbow flexors at 24, 48, and 72 hours after the experimental DOMS induction. Thirty healthy volunteers ($23{\pm}2.4$ yrs, $175{\pm}5.7$ cm, and $74{\pm}7.8$ kg) participated in this study. Each was randomly assigned to a PEMF or placebo group. On the first day, DOMS was induced in the elbow flexors by repeated isokinetic motions at low ($60^{\circ}/s$) and fast ($120^{\circ}/s$) speeds in all subjects. Thereafter, the PEMF group received 15-min daily treatment with a PEMF device. The placebo group received sham treatment of the same duration. Overall, PEMF application was more effective than the sham treatment in reducing the physiological symptoms associated with the DOMS including perceived soreness, median frequency, and electromechanical delay of the surface electromyography. In addition, median frequency and isokinetic peak torque of the PEMF group recovered to the pre-DOMS induction level earlier than the placebo group. In conclusion, this study suggests that PEMF can be applied as a new recovery strategy in reducing DOMS symptoms. Further experiments are required to examine the effect of the PEMF treatment on different types of exercise conditions and to determine the optimal treatment dosage and duration in a real clinical setting.

Effect of Pulsed Electromagnetic Field on MMP-9 and TIMP-1 Levels in Chondrosarcoma Cells Stimulated with IL-1β

  • Caliskan, Serife Gokce;Bilgin, Mehmet Dincer;Kozaci, Leyla Didem
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2701-2705
    • /
    • 2015
  • Chondrosarcoma, the second most common type of bone malignancy, is characterized by distant metastasis and local invasion. Previous studies have shown that treatment by pulsed electromagnetic field (PEMF) has beneficial effects on various cancer cells. In this study, we investigated the effects of PEMF applied for 3 and 7 days on the matrix metalloproteinase (MMP) levels in chondrosarcoma SW1353 cells stimulated with two different doses of $IL-1{\beta}$. SW1353 cells were treated with (0.5 and 5 ng/ml) $IL-1{\beta}$ and PEMF exposure was applied either 3 or 7 days. MMP-9 and TIMP-1 levels were measured in conditioned media by enzyme-linked immunosorbent assay. The results were relative to protein levels. Statistical analyses were performed using one-way analysis of variance (ANOVA). P<0.05 was considered significant. PEMF treatment significantly decreased MMP-9 protein levels in human chondrosarcoma cells stimulated with 0.5 ng/ml $IL-1{\beta}$ at day 7, whereas it did not show any effect on cells stimulated with 5 ng/ml $IL-1{\beta}$. There was no significant change in TIMP-1 protein levels either by $IL-1{\beta}$ stimulation or by PEMF treatment. The results of this study showed that PEMF treatment suppressed $IL-1{\beta}$-mediated upregulation of MMP-9 protein levels in a dual effect manner. This finding may offer new perspectives in the therapy of bone cancer.

Evaluation of Anti-Inflammatory Effect of Pulsed Electromagnetic Field on DNCB-Induced Atopic Dermatitis Using Principal Component Analysis (주성분 분석을 이용한 펄스형 전자기장 자극을 통해 DNCB로 유발된 아토피성 피부염의 개선 효과 분석)

  • Lee, Jiyoung;Kim, Jun-Yong;Lee, Yerin;Kim, Ko Eun;Lee, Yongheum;Yang, Sejung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.94-99
    • /
    • 2021
  • Atopic dermatitis (AD), a chronic inflammatory skin disease, is characterized by itchy and age-dependent lesions. Previous studies have shown that pulsed electromagnetic field (PEMF) significantly improved chronic ulcers and ununited fractures, providing an evidence for the application of PEMF in resolving inflammation caused by AD. This study investigated the anti-inflammatory effect of PEMF on DNCB-induced AD in animal models. Five male hairless mice (6 weeks old) per group were assigned to a normal group, a sham group, and two PEMF groups (15Hz, 75Hz). Mice were treated with 2,4-Dinitrochlorobenzene (DNCB) to induce uniform AD among all groups excluding a normal group. To examine the inflammatory progress and the improvement of AD after the PEMF stimulation, images are taken with various cameras for non-invasive evaluation and the results are expressed using principal component analysis (PCA) for visualization. The results of this study demonstrated that PEMF effectively improved skin lesions without the use of drugs.