• Title/Summary/Keyword: Pulsed Noise Jamming

Search Result 3, Processing Time 0.018 seconds

BER Analysis of Coherent Free-Space Optical Systems with Pulsed Noise Jamming (코히런트 무선 광통신 시스템에서 펄스 재밍으로 인한 비트오류율 분석)

  • Park, Hwi-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.304-306
    • /
    • 2016
  • In this letter, we investigate the performance of coherent free-space optical(FSO) systems under pulsed noise jamming conditions. In particular, we derive the average bit error probability of the coherent FSO systems with the pulsed noise jamming in a closed-form. Also, we derive the optimal fraction of symbol time of the jammer. We confirm the derived average error probability expressions by the exactly matching Monte-Carlo simulation results.

Self-Encoded Spread Spectrum with Iterative Detection under Pulsed-Noise Jamming

  • Duraisamy, Poomathi;Nguyen, Lim
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.276-282
    • /
    • 2013
  • Self-encoded spread spectrum (SESS) is a novel modulation technique that acquires its spreading code from a random information source, rather than using the traditional pseudo-random noise (PN) codes. In this paper, we present our study of the SESS system performance under pulsed-noise jamming and show that iterative detection can significantly improve the bit error rate (BER) performance. The jamming performance of the SESS with correlation detection is verified to be similar to that of the conventional direct sequence spread spectrum (DSSS) system. On the other hand, the time diversity detection of the SESS can completely mitigate the effect of jamming by exploiting the inherent temporal diversity of the SESS system. Furthermore, iterative detection with multiple iterations can not only eliminate the jamming completely but also achieve a gain of approximately 1 dB at $10^{-3}$ BER as compared with the binary phase shift keying (BPSK) system under additive white gaussian noise (AWGN) by effectively combining the correlation and time diversity detections.

ECCM Design of Tracking Radar (추적 레이다의 대전자전 설계)

  • Hong-Rak Kim;Man-Hee Lee;Sung-Ho Park;Youn-Jin Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.51-57
    • /
    • 2024
  • The tracking radar system is a pulsed tracking system that searches, detects, and tracks targets in real time for ships operating in the ocean. Ships defend themselves through soft kill operations to confuse or deceive the tracking radar. Soft Kill operations include passive chaff and active noise jamming. This paper understands the basic concepts of electronic warfare and explains various deception systems in operation on ships. In addition, each deception The radar system design to respond to the system is explained.