• Title/Summary/Keyword: Pulsed Laser Ablation (PLA)

Search Result 4, Processing Time 0.019 seconds

Nano Fabrication of Functional Materials by Pulsed Laser Ablation

  • Yun, Jong-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.6.2-6.2
    • /
    • 2009
  • Nanostructured materials arecurrently receiving much attention because of their unique structural andphysical properties. Research has been stimulated by the envisagedapplications for this new class of materials in electronics, optics, catalysisand magnetic storage since the properties derived from nanometer-scalematerials are not present in either isolated molecules or micrometer-scalesolids. This study presents the experimental results derived fromthe various functional materials processed in nano-scale using pulsed laserablation, since those materials exhibit new physical phenomena caused by thereduction dimensionality. This presentation consists of three mainparts to consider in pulsed laser ablation (PLA) technique; first nanocrystallinefilms, second, nanocolloidal particles in liquid, and third, nanocoating fororganic/inorganic hybridization. Firstly, nanocrystalline films weresynthesized by pulsed laser deposition at various Ar gas pressures withoutsubstrate heating and/or post annealing treatments. From the controlof processng parameters, nanocystalline films of complex oxides and non-oxidematerials have been successfully fabricated. The excellentcapability of pulsed laser ablation for reactive deposition and its ability totransfer the original stoichiometry of the bulk target to the deposited filmsmakes it suitable for the fabrication of various functionalmaterials. Then, pulsed laser ablation in liquid has attracted muchattention as a new technique to prepare nanocolloidal particles. Inthis work, we represent a novel synthetic approach to directly producehighly-dispersed fluorescent colloidal nanoparticles using the PLA from ceramicbulk target in liquid phase without any surfactant. Furthermore, novel methodbased on simultaneous motion tracking of several individual nanoparticles isproposed for the convenient determination of nanoparticle sizedistributions. Finally, we report that the GaAs nanocrystals issynthesized successfully on the surface of PMMA (polymethylmethacrylate)microspheres by modified PLD technique using a particle fluidizationunit. The characteristics of the laser deposited GaAs nanocrytalswere then investigated. It should be noted that this is the first successfultrial to apply the PLD process nanocrystals on spherical polymermatrices. The present process is found to be a promising method fororganic/inorganic hybridization.

  • PDF

Fabrication of various Si particle by Pulsed Laser Ablation (PLA법에 의한 Si 미립자 제작)

  • Kim, M.S.;Yoshimoto, Mamoru;Koinuma, Hideomi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.121-125
    • /
    • 2001
  • We study the feasibility of synthesizing Si particles using PLA method. In the previous studies, it was possible to control the size of Si nanoparticles by the He gas pressure. In this study, we fabricated sub-micron size Si particles with various shapes such as conical, hexagonal, and ring by controlling not only the ambient gas pressure but also the laser energy density. Furthermore, we found that the conical Si particles were uniform-sized and had step shape when observed from FE-SEM and AFM. The conical Si particle has the same crystal structure as the bulk single crystalline Si by the analysis of the Raman scattering. It is shown that the relationship between the laser energy density and the He gas pressure inside the chamber affects the shape of the Si particle.

  • PDF

Fabrication of various Si particle by Pulsed Laser Ablation (PLA법에 의한 Si 미립자 제작)

  • ;Mamoru Yoshimoto;Hideomi Koinuma
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.121-125
    • /
    • 2001
  • We study the feasibility of synthesizing Si particles using PLA method. In the previous studies, it was possible to control the size of Si nanoparticles bythe He gas pressure. In this study, we fabricated sub-micron size Si particles with various shapes such as conical, hexagonal, and ring by controlling not only the ambient as pressure but also the laser energy density. Furthermore, we found that the conical Si particles were uniform-sized and had step shape when observed from FE-SEM and AFM. The conical Si particle has the same crystal structure as the bulk single crystalline Si by the analysis of the Raman scattering. It is shown that the relationship between the laser energy density and the He gas pressure inside the chamber affects the shape of the Si particle.

  • PDF

Thin Film Deposition of Tb3Al5O12:Ce by Pulsed Laser Ablation and Effects of Low-temperature Post-annealing

  • Kim, Kang Min;Chung, Jun Ho;Ryu, Jeong Ho
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.76-79
    • /
    • 2012
  • $Tb_3Al_5O_{12}:Ce$ (TAG:Ce) thin films were successfully deposited by a pulsed laser ablation method on a quartz substrate, and low-temperature post-annealing effects on luminescent properties were investigated in detail. TAG:Ce thin films were analyzed by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The as-deposited films were amorphous, and post-annealing above $700^{\circ}C$ was required for crystallization. The post-annealed TAG:Ce thin films showed strong and broad emission bands around 542 nm and excitations at 451 nm, which all corresponded to transitions between the 4f ground level to the $5d^1$ excited levels of Ce ion.