• Title/Summary/Keyword: Pulsed Current

Search Result 494, Processing Time 0.028 seconds

Resistor Insertion in crowbar circuit of the Pulse Power System for Korean ETC Accelerator (전열화학추진장치용(電熱化學推進裝置用) 대전류(大電流) 펄스성형(成形) 회로의 크로우바 저항삽입의 검토)

  • Lee, Hong-Sik;Kim, Jong-Soo;Jin, Yun-Sik;Kim, Jin-Sung;Chu, Jeung-Ho;Jung, Jae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2215-2217
    • /
    • 1999
  • The high current pulsed power systems(PPS) for rail guns, ET and ETC accelerators require many components of very high cost. If one failed to select component specifications based on optimal design, cost effective and reliable PPS could not be obtained. It is very significant to study a preliminary circuit scheme and to determine optimal specifications via circuit simulation before constructing the PPS based on modulized capacitor banks. The optimal crowbar resistor value, module inductance was determined in view of energy loss, the voltage reversal of capacitors and the transient current of crowbar diodes.

  • PDF

Structural and Electrical Properties of Bismuth Magnesium Niobate Thin Films deposited at Various Temperatures

  • Park, Jong-Hyun;Yoon, Soon-Gil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.153-156
    • /
    • 2007
  • Structural and electrical properties of the fully crystallized-bismuth magnesium niobate ($Bi_2Mg_{2/3}Nb_{4/3}O_7$, BMN) films with 15 mol% excess bismuth deposited on Pt bottom electrode by pulsed laser deposition are characterized for various deposition temperatures. The BMN films were crystallized with a monoclinic structure from $300^{\circ}C$ and the surface roughness slightly decreases with increasing deposition temperature. The capacitance density of the films increases with increasing deposition temperature and especially, films deposited at $400^{\circ}C$ exhibit a capacitance density of approximately $620nF/cm^2$. The crystallized BMN films with approximately 170 nm thickness exhibit breakdown strength above 600 kV/cm (${\leq}10V$) irrespective of deposition temperature and a leakage current density of approximately $2{\times}10^{-8}A/cm^2$ at 590kV/cm (at 10 V).

Sputtering technique for magnesium oxide thin films (산화 마그네슘 박막의 스퍼터 제조기술)

  • Choi, Young-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1560-1561
    • /
    • 2006
  • A high rate deposition sputtering process of magnesium oxide thin film in oxide mode has been developed using a 20 kW unipolar pulsed power supply. The power supply was operated at a maximum constant voltage of 500 V and a constant current of 40 A. The pulse repetition rate and the duty were changed in the ranges of $10{\sim}50\;kHz$ and $10{\sim}60%$, respectively. The deposition rate increased with rising incident power to the target. Maximum incident power to the magnesium target was obtained by the control of frequency, duty and current. The deposition rate of a moving state was 9 nm m/min at the average power of 1.5 kW.

  • PDF

Surface Morphological Properties of Micro-arc Oxidation Coating on Al6061 Alloys using Unipolar Pulse (Unipolar pulse를 이용하여 형성된 Al6061 합금 표면의 MAO 코팅의 표면 구조에 대한 연구)

  • Kim, Nam-youl;Park, Seung-Ho;Park, Ki-Youg;Choi, Jin-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.421-426
    • /
    • 2017
  • Herein, we investigated surface morphological characteristics of anodic films on Al6061 alloy prepared by unipolar pulsed Micro-arc oxidation (MAO) in a mixed solution of $Na_2SiO_3$ + KOH. The number and size of pores as well as craters on anodic alumina surface were studied as a function of different voltages, duty cycles and applied anodic current densities. The morphological characteristics of all samples were investigated by scanning electron microscopy, conforming that the most uniform surface morphology of MAO films on Al1050 alloy was obtained at high applied current density with low duty cycle.

Analysis and Compensation Control of Dead-Time Effect on Space Vector PWM

  • Shi, Jie;Li, Shihua
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.431-442
    • /
    • 2015
  • Dead-time element must be set into space vector pulsed width modulation signals to avoid short circuits of the inverter. However, the dead-time element distorts the output voltage vector, which deteriorates the performance of electrical machine drive system. In this paper, dead-time effect and its compensation control strategy are analyzed. Based on the analysis, the voltage distortion caused by dead-time is regarded as two disturbances imposed on dq axes in the rotor reference frame, which degenerates the current tracking performance. To inhibit the adverse effect caused by the dead-time, a control scheme using two linear extended state observers is proposed. This method provides a strong ability to suppress dead-time effects. Simulations and experiments are conducted on a permanent magnet synchronous motor drive system to demonstrate the effectiveness of the proposed method.

Laser Induced Impedance Changes in Hollow Cathode Lamps

  • Byung Chul Cha;Jae Jung Lee;Ki Beom Lee;Hyo Jin Kim;Gae Ho Lee;Hasuck Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.610-614
    • /
    • 1993
  • Laser induced impedance changes in hollow cathode lamps containing sputtered metal atoms have been employed to measure the spectroscopic properties of metal. This technique, known as optogalvanic spectroscopy, has been shown to be a powerful and inexpensive technique for the investigation of atomic and molecular species. Characteristic optogalvanic signals from hollow cathode lamps (HCL) made of different metal species and induced with a pulsed dye laser were observed, and the dependence of the optogalvanic signal on the discharge current and wavelength of laser was measured. Based on the results obtained, the mechanisms involved in evoking the optogalvanic signals were consisted of single-photon absorption, multi-photon absorption, and photoionization. Moreover the current dependence of the optogalvanic signal indicates that the optogalvanic technique could be one of the most sensitive optical methods of detecting atomic species.

Optimization of Process Parameters for AISI 4340 Steel in Electrical Discharge Machining (AISI 4340강의 방전가공에서 공정변수의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.17-22
    • /
    • 2019
  • The method of electrical discharge machining (EDM), one of the processing methods based on non-traditional manufacturing procedures, is gaining increased popularity, since it does not require cutting tools and allows machining involving hard, brittle, thin and complex geometry. This present investigation details the determination of optimum process parameter to attain the better machining performance in EDM of AISI 4340 steel with graphite as a tool electrode. The experimental combinations are planned and analyzed by Taguchi's design of experiments approach. To predict the optimal condition, the experiments are conducted by using Taguchi's L27 orthogonal array. The influence of process variables such as discharge current, pulse on and pulse off time, voltage and spark speed were investigated to control the various desired performance measures such as surface roughness. Analysis of Variance (ANOVA) has to be performed to know the magnitude of each factor. Investigations indicate that the surface roughness is strongly depend on pulsed current.

Preparation of CeO$_2$ Thin Films as an Insulation Layer and Electrical Properties of Pt/$SrBi_2$$Ta_2$$O_9$/$CeO_24/Si MFISFET (절연층인 CeO$_2$박막의 제조 및 Pt/$SrBi_2$$Ta_2$$O_9$/$CeO_24/Si MFISFET 구조의 전기적 특성)

  • Park, Sang-Sik
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.807-811
    • /
    • 2000
  • CeO$_2$ and SrBi$_2$Ta$_2$O$_{9}$ (SBT) thin films for MFISFET (Metal-ferroelectric-insulator-semiconductor-field effect transistor) were deposited by r.f. sputtering and pulsed laser ablation method, respectively. The effects of sputtering gas ratio(Ar:O$_2$) during deposition for CeO$_2$ films were investigated. The CeO$_2$ thin films deposited on Si(100) substrate at $600^{\circ}C$ exhibited (200) preferred orientation. The preferred orientation, Brain size and surface roughness of films decreased with increasing oxygen to argon gas ratio. The films deposited under the condition of Ar:O$_2$= 1 : 1 showed the best C- V characteristics. The leakage current of films showed the order of 10$^{-7}$ ~10$^{-8}$ A at 100kV/cm. The SBT thin films on CeO$_2$/Si substrate showed dense microstructure of polycrystalline phase. From the C-V characteristics of MFIS structure with SBT film annealed at 80$0^{\circ}C$, the memory window width was 0.9V at 5V The leakage current density of Pt/SBT/CeO$_2$/Si structure annealed at 80$0^{\circ}C$ was 4$\times$10$^{-7}$ /$\textrm{cm}^2$ at 5V.

  • PDF

Limnological Study on Spring-Bloom of a Green Algae, Eudorina elegans and Weirwater PulsedFlows in the Midstream (Seungchon Weir Pool) of the Yeongsan River, Korea (영산강 중류 (승촌보)의 봄철 녹조류 Eudorina elegans 대발생과 봇물 펄스방류에 대한 육수학적 고찰)

  • Shin, Jae-Ki;Kang, Bok-Gyoo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.320-333
    • /
    • 2016
  • This study was carried out to elucidate the development of unprecedented water-bloom caused by a single species of colonial green algae Eudorina elegans in the upstream area of the Seungchon weir located in the Yeongsan River from late April to May 2013. The Yeongsan River is typically regulated system and the waterbody is seriously enriched by both external and internal sources of nutrients. Seasonal algal outbreaks were highly probable due to various potential factors, such as the excessive nutrients contained in treated wastewater, slow current, high irradiation and temperature, in diatom (winter), green algae (spring) and bluegreen algae (summer). Spring green-tide was attributed to E. elegans with level up to $1,000mg\;m^{-3}$(>$50{\times}10^4cells\;mL^{-1}$). The bloom was exploded in the initial period of the algal development and after then gradually diminished with transporting to the downstream by the intermittent rainfall, resulting in rapid expansion of the distribution range. Although the pulsed-flows by the weir manipulation was applied to control algal bloom, they were not the countermeasures to solve the underlying problem, but rather there still was a remaining problem related to the impact of pulsed-flows on the downstream. The green-tide of E. elegans in this particular region of the Yeongsan River revealed the blooming characteristics of a colonial motile microalga, and fate of vanishing away by the succeeding episodic events of mesoscale rainfall. We believe that the results of the present study contribute to limno-ecological understanding of the green-tide caused by blue-green algae in the four major rivers, Korea.

A Study of pH, Duty Cycle, Agitation on the Property of Co-deposited TiO2 and Thermal Stability in the Electrodeposited Ni-TiO2 Composite (pH, duty cycle, 교반, 첨가제가 Ni-TiO2 전기도금 복합체의 TiO2 공석특성과 열적안정성에 미치는 영향 연구)

  • Kim, Myong-Jin;Kim, Joung-Soo;Kim, Dong-Jin;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.3
    • /
    • pp.97-105
    • /
    • 2012
  • The effects of pH, types of applied current, agitation method and time, additive on the amount of co-deposited $TiO_2$ particles in the matrix were investigated. The deposition rates increased with increasing pH values, while the volume fraction of $TiO_2$ particles and the size of agglomerated $TiO_2$ particles in the composite decreased. The volume fraction of $TiO_2$ particles in the composite decreased when pulsed current of 50% duty cycle was used. And the size of agglomerated $TiO_2$ particles in the nickel matrix of pulsed current was smaller than that of DC current specimen. The volume fraction of $TiO_2$ particles in the matrix decreased with longer time by air agitation, but in case of using magnetic bar, volume fraction in the same range of time was relatively constant. The volume fraction of the electrodeposited Ni-$TiO_2$ composite in the solution containing 0.01 M Dimethylamine borane (DMAB) increased slightly with increasing agitation time regardless of agitation methods. Thermal stability of the electrodeposited Ni-$TiO_2$ composite increased with lower pH at the temperature range of $200{\sim}800^{\circ}C$, and the results showed that the amount of co-deposited $TiO_2$ relies more on the deposition rate than zetapotential of $TiO_2$ particles.