• Title/Summary/Keyword: Pulsed Barrier Discharge

Search Result 12, Processing Time 0.027 seconds

Optical properties of nitrogen doped ZnO thin films grown by dielectric barrier discharge plasma-assisted pulsed laser deposition (Dielectric barrier discharge 플라즈마 펄스 레이져 증착법을 통해 성장한 nitrogen 도핑 된 산화아연 박막의 광학적 특성)

  • Lee, Deuk-Hee;Kim, Sang-Sig;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1256_1257
    • /
    • 2009
  • We have grown, for the first time to our knowledge, N-doped ZnO thin films on sapphire substrate by employing novel dielectric barrier discharge in pulsed laser deposition (DBD-PLD). DBD guarantees an effective way for massive in-situ generation of N-plasma under the conventional PLD process condition. Low-temperature photoluminescence spectra of the N-doped ZnO film provided near band-edge emission after thermal annealing process. The emission peak was resolved by Gaussian fitting to find a dominant acceptor-bound exciton peak ($A^0X$) that indicates the successful p-type doping of ZnO with N.

  • PDF

Evaluation of Acceptor Binding Energy of Nitrogen-Doped Zinc Oxide Thin Films Grown by Dielectric Barrier Discharge in Pulsed Laser Deposition

  • Lee, Deuk-Hee;Chun, Yoon-Soo;Lee, Sang-Yeol;Kim, Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.200-203
    • /
    • 2011
  • In this research, nitrogen (N)-doped zinc oxide (ZnO) thin films have been grown on a sapphire substrate by dielectric barrier discharge (DBD) in pulsed laser deposition (PLD). DBD has been used as an effective way for massive in-situ generation of N-plasma under conventional PLD process conditions. Low-temperature photoluminescence spectra of N-doped ZnO thin films provided near-band-edge emission after a thermal annealing process. The emission peak was resolved by Gaussian fitting and showed a dominant acceptor-bound excitation peak ($A^{\circ}X$) that indicated acceptor doping of ZnO with N. The acceptor binding energy of the N acceptor was estimated to be approximately 145 MeV based on the results of temperature-dependent photoluminescence (PL) measurements.

Discharge characteristics of FFL as applied voltage variation (인가 전압의 변화에 따른 FFL(Flat Fluorescent Lamp)의 방전특성)

  • 윤성현;박철현;조민정;임민수;권순석;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.379-382
    • /
    • 2000
  • The characteristics of Xe discharge lamp(Mercuryless lamp) are described in this paper. In this paper, FFL is operated by sine wave and pulsed source. We apply V-Q Lissajous' figure for the discharge measurements of FFL which has the electrodes covered with dielectric. When FFL is operated by sine wave source, the characteristics are similar to DBD(Dielectric Barrier Discharge) and SD(Silent Discharge). And we compared the characteristics of FFL which is operated with sine wave and pulsed discharge by using V-Q Lissajous' figure method. When FFL is operated with pulsed, the discharge current flows after the applied voltage is risen. As the duty ratio increases the electric field becomes strong and much more xenon ions are produced. And the number of metastable xenon atoms seem to increase, therefore, the phosphor radiation after the cut off of voltage increases compared with the first peak of radiation. Consequently, the 172㎚ radiation becomes strong as the duty ratio increases.

  • PDF

Fabrication of Atmospheric Coplanar Dielectric Barrier Discharge and Analysis of its Driving Characteristics (평면형 대기압 유전장벽방전장치의 제작 및 동작특성분석)

  • Lee, Ki-Yung;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.80-84
    • /
    • 2014
  • The discharge characteristics of Surface Dielectric Barrier Discharge (SDBD) reactor are investigated to find optimal driving condition with adjusting various parameter. When the high voltage with sine wave form is applied to SDBD source, successive pulsed current waveforms are observed owing to multiple ignitions through the long discharge channel and wall charge accumulation on the dielectric surface. The discharge voltage, total charge between dielectrics, mean energy and power are calculated from measured current and voltage according to electrode gap and dielectric thickness. Discharge mode transition from filamentary to diffusive glow is observed for narrow gap and high applied voltage case. However, when the diffusive discharge is occurred with high applied voltage, the actual firing voltage is always lower than that with low driving voltage. The $Si_3N_4$, $MgF_2$, $Al_2O_3$ and $TiO_2$ are considered for dielectric protection and high secondary electron emission coefficient. SDBD with $MgF_2$ shows the lowest breakdown voltage. $MgF_2$ thin film is proposed as a protection layer for low voltage atmospheric dielectric barrier discharge devices.

A Spatio-Temporal Density Measurement of NO Molecules in Pulsed Barrier Discharge Using Laser Induced Fluorescence (레이져 유기형광법을 이용한 펄스 배리어 방전 공간에서의 NO분자에 대한 시·공간적 밀도변화 측정)

  • Han, Sang-Bo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.160-168
    • /
    • 2010
  • This paper tried to find out NO generation and removal mechanisms in the space of the atmospheric pulsed barrier discharge using laser induced fluorescence method, which is a very effective approach to the measurement of spatio-temporal density of specific molecules. The propagation velocity of the primary streamer reaches about $2.7{\times}10^6$[m/s] and the secondary streamer is produced in the vicinity of positive electrode after the primary streamer finished. In this work, pulse Nd:Yag and Dye lasers are used for generating the specific wavelength of 226[nm], which is possible to excite NO molecules into $A^2{\Sigma}^+{\rightarrow}X^2{\prod}$(0,0) and fluorescence signals as the transition of $A^2{\Sigma}^+{\leftarrow}X^2$(0,2) is measured. For the effective removal of NO molecules in the plasma discharge process, the lower oxygen contents are needed and the influence of secondary streamer for the reduction mechanism of NO molecules is important

Air/Quartz Dielectric Double Barrier Pulse Discharge (공기/석영관(空氣/石英管) 복합유전체(複合誘電體)장벽층(障壁層)의 고주파(高周波) 펄스 방전(放電) 특성(特性))

  • Lee, Eung-Gwan;Woo, Jung-Uk;Chung, Suk-Hwan;Lee, Dong-Hoon;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1556-1558
    • /
    • 1994
  • An air/quartz dielectric double barrier pulse discharge has been investigated to develop a novel si lent type ozone generator. It is found that there are very active pulsed coronas occurred in the airgap which are very useful for ozone generation. And, the corona onset voltage of the airgap of the air/quartz double barrier was enfluenced greatly by the airgap of the air/quartz dielectric double barrier, and depended greatly upon the airgap ranged of $0.0{\sim}3.0mm$ and by the quartz tube thickness ranged of $1.75{\sim}2.25mm$.

  • PDF

Bidirectional Pulse Power Supply for Dielectric Barrier Discharge (유전체 장벽 방전을 위한 양방향 펄스 전원장치)

  • Shin, Wan-Ho;Hong, Won-Seok;Jeoung, Hwan-Myoung;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1521-1523
    • /
    • 2005
  • High voltage plasma power supply was adopted to control polluted gases and an ozone generation. Bidirectional pulse power supply consisted of power semiconductor switch devices, a high voltage transformer, and a control board adapted switching method. Plasma power supply with sinusoidal bidirectional pulse, which has output voltage range of 0-20kV and output frequency range of 1kHz-20kHz, is realized. Using proposed system, pulsed high voltage/high frequency discharges were tested in a DBD(dielectric barrier discharge) reactor, and the spatial distribution of a glow discharge was observed. The system showed stable operational characteristics, even though the voltage and the frequency increased. Above features were verified by experiments.

  • PDF

Analysis of Effects of Space Charge in Removal efficiency of Pollutant using Dielectric Barrier Discharges (유전체장벽방전효과를 이용한 공해물질 제거 효율에 미치는 공간전하의 영향 분석)

  • Nam, S.H.;Jeon, S.I.;Lee, D.Y.;Lee, J.H.;Han, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1441-1443
    • /
    • 1998
  • In this work, the effects of space charge was analyzed in removal efficiency of pollutant using dielectric barrier discharges. In order to investigate effects of space charge, two dielectrics(XLPE and TR-XLPE) was chosen which are different in space charge distribution. The simultaneously measurement of space charge and discharge current was carried out in XLPE and TR-XLPE with air gap by Pulsed-Electro-Acoustic Method in ac. Also, the removal efficiency is measured by classical ozone generator(von Siemens 1875). From the experimental results, we knew that the space charge distribution affects the discharge patterns. The more space charge is in surface, the quickly discharge initiates and the magnitude of discharge is increased when polarity changes. And these affect the removal efficiency of pollutant.

  • PDF

Stability enhancement of armorphous znic oxide thin film transistors fabricated by pulsed laser deposition with DBD (PLD-DBD 공정으로 제작된 비정질 Zn 산화물 박막트랜지스터의 안정성 향상)

  • Chun, Yoon-Soo;Chong, Eu-Gene;Jo, Kyoung-Chol;Kim, Seung-Han;Jung, Da-Woon;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.391-391
    • /
    • 2010
  • The stability enhancement of Znic oxide thin film transistor deposited by PLD-DBD has been reported here using the bias temperature stress test. Znic oxide (ZnO) thin films were deposited on $SiO_2$/Si (100) by pulsed laser deposition method with and without dielectric barrier discharge (DBD) method. The DBD is the efficient method to adopt the nitrogen ions into the thin films. The TFT characteristics of ZnO TFTs with and without Nirogen (N) doping show similar results with $I_{on/off}$ of $10^5{\sim}10^6$. However. the bias temperature stress (BTS) test of N-doped ZnO TFT with DBD shows higher stability than that of ZnO TFT.

  • PDF

Operational Properties and Microbial Inactivation Performance of Dielectric Barrier Discharge Plasma Treatment System (유전체장벽방전 플라즈마 장치의 조작특성과 살균력)

  • Mok, Chulkyoon;Lee, Taehoon
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.398-403
    • /
    • 2011
  • A dielectric barrier discharge plasma (DBDP) treatment system was fabricated and the optimum operating conditions for the plasma generation were determined in order to explore the potential of cold plasma as a non-thermal proessing technology. The microbial inactivation performance of the system was also evaluated against Staphyloocus aureus. The system consisted of power supply, transformer, electrode assembly and sample treatment plate. The input power was 220 V single phase AC and amplified to 10.0-50.0 kV on a transformer. A pulsed sine wave of frequency 10.0-50.0 kHz was introduced to the electrode embedded in ceramic as a dielectric barrier material in order to generate plasma at atmospheric pressure. Higher currents and consequently greater power were required for the plasma generation as the frequencies increased. A homogeneous and stable plasma was generated at currents of 1.0-2.0, and frequencies of 32.0-35.3 kHz. The optimum electrode-gaps for the plasma generation were 1.85 mm without loaded samples. More power was consumed as the electrode-gaps increased. The practically optimum electrode- gap was, however, 2.65 mm when samples were treated on slide-glasses for microbial inactivation. The maximum temperature increase after 10 min treatment was less than 20$^{\circ}C$, indicating no microbial inactivation effect by heat and thereby insuring a non-thermal method. The DBDP inactivation effect against Staphyloocus aureus increased linearly with treatment time up to 5 min, but plateaued afterward. More than 5 log reduction was achieved by 10 min treatment at 1.25 A.