• Title/Summary/Keyword: Pulse-Compression

Search Result 142, Processing Time 0.023 seconds

Design of X-Band High Efficiency 60 W SSPA Module with Pulse Width Variation (펄스 폭 가변을 이용한 X-대역 고효율 60 W 전력 증폭 모듈 설계)

  • Kim, Min-Soo;Koo, Ryung-Seo;Rhee, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1079-1086
    • /
    • 2012
  • In this paper, X-band 60 W Solid-State Power Amplifier with sequential control circuit and pulse width variation circuit for improve bias of SSPA module was designed. The sequential control circuit operate in regular sequence drain bias switching of GaAs FET. The distortion and efficiency of output signals due to SSPA nonlinear degradation is increased by making operate in regular sequence the drain bias wider than that of RF input signals pulse width if only input signal using pulsed width variation. The GaAs FETs are used for the 60 W SSPA module which is consists of 3-stage modules, pre-amplifier stage, driver-amplifier stage and main-power amplifier stage. The main power amplifier stage is implemented with the power combiner, as a balanced amplifier structure, to obtain the power greater than 60 W. The designed SSPA modules has 50 dB gain, pulse period 1 msec, pulse width 100 us, 10 % duty cycle and 60 watts output power in the frequency range of 9.2~9.6 GHz and it can be applied to solid-state pulse compression radar using pulse SSPA.

Mechanical Properties of Electro-Discharge-Sintered Porous Titanium Implants (전기방전소결에 의해 제조된 다공성 Titanium 임플란트의 기계적 특성)

  • Hyun, C.Y.;Huh, J.K.;Lee, W.H.
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.173-177
    • /
    • 2006
  • Porous surfaced Ti implant compacts were fabricated by electro-discharging-sintering (EDS) of atomized spherical Ti powders. Powders of $50-100{\mu}m$ in diameter were vibratarily settled into a quarts tube and subject to a high voltage and high density current pulse in Ar atmosphere. Single pulse of 0.7 to 2.0 kJ/0.7 gpowder, from 150, 300, and $450{\mu}F$ capacitors was applied in less than $400{\mu}sec$ to produce twelve different porous-surfaced Ti implant compacts. The solid core formed in the center of the compact shows similar microstructure of cp Ti which was annealed and quenched in water. Hardness value at the solid core was much higher than that at the particle interface and particles in the porous layer, which can be attributed to both heat treatment and work hardening effects induced by EDS. Compression tests were made to evaluate the mechanical properties of the EDS compacts. The compressive yield strength was in a range of 12 to 304MPa which significantly depends on input energy. Selected porous-surfaced Ti-6Al-4V dental implant compacts with a solid core have much higher compressive strengths compared to the human teeth and sintered Ti dental implants fabricated by conventional sintering process.

High Power Laser Driven Shock Compression of Metals and Its Innovative Applications (고 출력 레이저에 의한 충격파 현상 연구 및 응용)

  • Lee, Hyun-Hee;Gwak, Min-Cheol;Choi, Ji-Hee;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.832-840
    • /
    • 2008
  • Ablation occurs at irradiance beyond $10^9\;W/cm^2$ with nanosecond and short laser pulses focused onto any materials. Phenomenologically, the surface temperature is instantaneously heated past its vaporization temperature. Before the surface layer is able to vaporize, underlying material will reach its vaporization temperature. Temperature and pressure of the underlying material are raised beyond their critical values, causing the surface to explode. The pressure over the irradiated surface from the recoil of vaporized material can be as high as $10^5\;MPa$. The interaction of high power nanosecond laser with a thin metal in air has been investigated. The nanosecond pulse laser beam in atmosphere generates intensive explosions of the materials. The explosive ejection of materials make the surrounding gas compressed, which form a shock wave that travels at several thousand meters per second. To understand the laser ablation mechanism including the heating and ionization of the metal after lasing, the temporal evolution of shock waves is captured on an ICCD camera through laser flash shadowgraphy. The expansion of shock wave in atmosphere was found to agree with the Sedov's self-similar spherical blast wave solution.

EXPANSION OF HYUNDAI'S MEDIUM SPEED DIESEL ENGINE FAMILY, HiMSEN (현대중공업 중속디젤엔진 힘센엔진 패밀리의 신모델 추가 개발)

  • Kim, J.S.;Kim, J.T.;Kwon, O.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.92-100
    • /
    • 2005
  • Since HiMSEN H21/32, a new medium speed diesel engine of Hyundai's own design, was introduced in 2001, Hyundai has added new models of H25/33 and H17/28 into HiMSEN engine family. These two new engines take after faithfully to the original HiMSEN concept of a PRACTICAL engine by Hi-Touch and Hi-Tech. The prototype of H25/33 was developed jointly with Rolls Royce Bergen originally and also introduced in 2001. But most of the engine design have been changed by Hyundai for the commercial versions to be a member of HiMSEN family, which has little interchangeability with the prototype. H17/28 is now under development as the smallest size of the family. This new engine also has the longest stroke of a class engine, which has been proven as the best basis for future environmental challenge. The higher compression ratio of 17 and optimized Miller Timing with Simplified pulse turbocharging system applied all HiMSEN engines as which showed the most practical solution against current heavy fuel combustion issues for the time being before introducing digital control system. This paper describes the design and development of these new HiMSEN engines and also reviews the service experiences of H21/32 and H25/33, which launched successfully.

  • PDF

Mechanical and durability properties of concrete incorporating glass and plastic waste

  • Abdelli, Houssam Eddine;Mokrani, Larbi;Kennouche, Salim;Aguiar, J.L. Barroso de
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.173-181
    • /
    • 2021
  • The main objective of this work is to contribute to the valorization of plastic and glass waste in the improvement of concrete properties. Waste glass after grinding was used as a partial replacement of the cement with a percentage of 15%. The plastic waste was cut and introduced as fibers with 1% by the total volume of the mixture. Mechanical and durability tests were conducted for various mixtures of concrete as compressive and flexural strengths, water absorption, ultrasonic pulse velocity, and acid attack. Also, other in-depth analyses were performed on samples of each variant such as X-ray diffraction (XRD), thermogravimetric analysis (DSC-TGA), and scanning electron microscope (SEM). The results show that the addition of glass powder or plastic fibers or a combination of both in concrete improved in the compression and flexural strengths in the long term. The highest compressive strength was obtained in the mix which combines the two wastes about 26.72% of increase compared to the control concrete. The flexural strength increased in the mixture containing the glass powder. Therefore, the mixture with two wastes exhibits better resistance to aggressive sulfuric acid attack, and incorporating glass powder improves the ultrasonic pulse velocity.

The Design of a Linear Compressor Based on the Resonance Characteristics for the Air Conditioner (공진특성을 고려한 냉동/공조용 횡자속 선형압축기의 설계)

  • Hong, Yong-Ju;Park, Seong-Je;Kim, Hyo-Bong
    • 연구논문집
    • /
    • s.34
    • /
    • pp.39-46
    • /
    • 2004
  • The compressors in the air conditioner have the role of the pressurization and circulation of the refrigerant. The hermetic reciprocating compressors driven by rotary motor have been used for the air conditioner. The linear compressor has very simple structure and enhancement in the efficiency in comparison to that of conventional reciprocating compressor. The linear compressors are widely used for the small cryogenic refrigerator (below 1 kW), such as the Stirling refrigerator and pulse tube refrigerator. In the cryogenic application, the pressure ratio of the linear compressor is below 1.5, but the linear compressor for the air conditioner should overcome the high pressure ratio and the large pressure difference between the each sides of the piston. The resonance characteristics of the linear compressor has the significant impacts on the power consumption. To minimize the power consumption, the linear compressor should be operated at the resonance point. In the resonance characteristics, the role of the mechanical and gas spring should be considered. In present study, the cycle of the analysis of the vapor compression refrigeration cycle with the different refrigerants (R134a, R4l0a, R600a) and the designs of the linear compressor are performed. The effects of the stiffness of the mechanical spring on the electromagnetic forces would be discussed. Finally, the results show the design specification of the linear compressor for the air conditioner.

  • PDF

An Experimental Study on the Development of Electromagnetic Shielding Concrete Wall for Shielding High-altitude Electromagnetic Pulse (HEMP) (고고도 전자기파(HEMP)차폐를 위한 전자파 차폐 콘크리트 벽체 개발에 관한 실험적 연구)

  • Choi, Hyun-Jun;Kim, Hyung-Chul;Lim, Sang-Woo;Lee, Han-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.169-177
    • /
    • 2017
  • Rather than causing damage from heat, blast, and radiation of a regular nuclear weapon, recently, it is predicted that North Korea has been inventing high altitude electromagnetic pulse (HEMP) missile in order to incapacitate electronic equipment. HEMP shielding facility is used for military purpose today. Despite the electromagnetic shielding effects from high quality compression plates, problems may include such as the possibility of electromagnetic influx resulting in the welding of the compression plates, and difficulties and high cost of construction. Therefore, in this study, a high electrical conducting material was added to the concrete experimental subject to ensure the shielding effect through electromagnetic waves to for the concrete structure, instead of building a shielding facility separately for the structure. Also, among the experimental subjects, 100 ${\mu}m$ of Iron-Aluminum alloy metal spraying coat was applied to two types with the highest shielding effect, and to two types with the lowest shielding effect. The result of the experiment indicates that experimental subjects added with a high electrical conductivity material did not meet the minimum shielding criteria of MIL-STD-118-125-1 standard, but all the experimental material applied to the metal spraying coating satisfied the minimum shielding criteria. In conclusion, it is considered that 100 µm of Iron-Aluminum alloy metal spraying coat contains high efficiency in the HEMP shielding.

Estimation of Setting Time and Early-age Strength of Concrete Using the Ultrasonic Pulse Velocity (초음파 속도를 이용한 콘크리트의 응결 및 초기 강도 추정)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Young-Hwan;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.292-303
    • /
    • 2002
  • This paper presents experimental results for early-age properties of concrete such as the setting time and strength, evaluated via the ultrasonic pulse velocity (UPV). Developing and using an automatically-recording monitoring system, the UPV's of mortar and concrete with various water to binder ratios (W/B) were measured during the first 24 hours. In addition, probe penetration and compression tests were conducted to measure the setting time and compressive strength, respectively. It was observed that the UPV's of mortar with high W/B remained constant during the first 6.5 hours and then abruptly began to increase at constant rates. On the other hand, the UPV of mortar with low W/B increased relatively slowly and gradually due to the setting retardation caused by the use of high range water reducing agent (HRWR). It was found that setting of concrete occurs when the UPV reaches a certain value. Moreover, it was concluded that the estimation formulas should incorporate the effects of W/B to more accurately estimate the early-age strength of concrete from the UPV.

A Study on the Impulse Waves Discharged from the Exit of the Convergent and Divergent Pipes (축소관과 확대관 출구로부터 방출되는 펄스파에 관한 연구)

  • Lee, D.H.;Lee, M.H.;Kweon, Y.H.;Kim, H.D.;Park, J.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.346-354
    • /
    • 2002
  • The present study is to investigate the propagation characteristics of the impulse waves discharged from the exit of the convergent and divergent pipes. An experiment is carried out using a shock tube with an open end and is compared to the computation of the axisymmetric, compressible, unsteady Euler equations, which are solved by the second-order total variation diminishing (TVD) scheme. For the computational work, several initial compression waves are assumed inside the pipe so that those are the same to the experimental ones of the shock tube. The results show that the peak pressures of the impulse waves discharged from the exit of convergent and divergent pipes decrease with an increase in the wavelength of the initial compression wave. All of the impulse waves have a strong directivity toward the pipe axis, regardless of the exit type of the pipe employed. The impulse waves discharged from the divergent pipe are stronger than those from the straight pipe, while the impulse waves of the convergent pipe are weaker than those from the straight pipe. It is found that the convergent pipe can play a role of a passive control to reduce the peak pressure of the impulse wave. The present computations represent the experimented impulse waves with a good accuracy.

Wavelet Encoded MR Imaging (웨이블릿 부호화 자기공명영상)

  • Kim, Eung-Kyeu;Lee, Soo-Jong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.343-346
    • /
    • 2005
  • In this study, a basic concept of wavelet encoding and its advantages over Fourier based phase encoding application. Wavelet encoding has been proposed as an alternative way to Fourier based phase encoding in magnetic resonance imaging. In wavelet encoding, the RF pulse is designed to generate wavelet-shaped excitation profile of spins. From the resulting echo signals, the wavelet transform coefficients of spin distribution are acquired and an original spin density is reconstructed from wavelet expansion. Wavelet encoding has several advantages over phase encoding. By minimizing redundancy of the data acquisition in a dynamic series of images, we can avoid some encoding steps without serious loss of quality in reconstructed image. This strategy may be regarded as data compression during imaging. Although there are some limitations in wavelet encoding, it is a promising scheme in a dynamic imaging.

  • PDF