• Title/Summary/Keyword: Pulse width ratio

Search Result 168, Processing Time 0.025 seconds

DFIG Wind Power System with a DDPWM Controlled Matrix Converter

  • Lee, Ji-Heon;Jeong, Jong-Kyou;Han, Byung-Moon;Choi, Nam-Sup;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.299-306
    • /
    • 2010
  • This paper proposes a new doubly-fed induction generator (DFIG) system using a matrix converter controlled by direct duty ratio pulse-width modulation (DDPWM) scheme. DDPWM is a recently proposed carrier based modulation strategy for matrix converters which employs a triangular carrier and voltage references in a voltage source inverter. By using DDPWM, the matrix converter can directly and effectively generate rotor voltages following the voltage references within the closed control loop. The operation of the proposed DFIG system was verified through computer simulation and experimental works with a hardware simulator of a wind power turbine, which was built using a motor-generator set with vector drive. The simulation and experimental results confirm that a matrix converter with a DDPWM modulation scheme can be effectively applied for a DFIG wind power system.

Determination of the Optimum-Bandwidth of Chirp-Signal for Pulse Compression Technique (펄스압축 기술을 위한 chirp 신호의 최적대역폭 결정)

  • Ko, Dae-Sik;Moon, Gun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.5-9
    • /
    • 1997
  • In this paper, when we use the chirp signal as input signal of ultrasonic signal system the technique for determining the bandwidth of the chirp signal that maximizes the amplitude of the compressed ultrasonic echo signal has been studied. In ultrasonic signal processing systems, the signal-to-noise ratio of the echo signal can be too low due to damping and scattering of the ultrasonic wave during transmission. Method of pulse compression using chirp signal is a means to increase the signal-to-noise ratio in ultrasonic pulse-echo systems. Simulation and experimental results showed that the output signal of ultrasonic system was increased by pulse width of chirp signal and the optimum-bandwidth of the chirp signal was 1.15 times larger than the bandwidth of the ultrasonic system.

  • PDF

Characteristics of the Electromagnetic Fields Radiated from Stepped Leaders Just Prior to Lightning Return Strokes (계단상 리더에 의해서 방사된 귀환뇌격 직전의 전장과 자장 파형의 특성)

  • 이복희;이동문;정동철;장근철;이승칠;정광희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • In this paper statistics on the radiation field waveforms produced by stepped leaders just prior to lightning return strokes were described. As a parameter of stepped leader pulse characteristics, the time interval between the final leader pulse and return stroke peak, the pause time between stepped leaders, the ratio of the final leader peak to the return stroke peak and the stepped leader pulse width at half maximum were examined. The average time intervals between the final leader pulse and return stroke peak were about 16.2 and 14.8$mutextrm{s}$ for the positive and negative polarities, respectively. When the stepped leader approaches closely to ground, the time interval between leader steps was decreased and the mean value was about 17$mutextrm{s}$, and the present results were in reasonable agreement with the data observed in Florida and Japan. The large fraction of the ratios of the final stepped leader pulse to the lightning return stroke peak were distributed over the range from 5 to 35% and in average the ratio of the final leader pulse to the return stroke peak was 17.4$\pm$11.9% for the positive and 18.5$\pm$9.4% for the negative electric field waveforms. In addition, the mean pulse widths at half maximum of the stepped leaders are 1.4Us with a standard deviation of 0.9 for the positive Polarity and 2.2us with a standard deviation of 1.2 for the negative polarity, respectively.

Design of digital clock level translator with 50% duty ratio from small sinusoidal input (작은 정현파입력의 50% Duty Ratio 디지털 클럭레벨 변환기 설계)

  • Park, Mun-Yang;Lee, Jong-Ryul;Kim, Ook;Song, Won-Chul;Kim, Kyung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2064-2071
    • /
    • 1998
  • A new digital clock level translator has been designed in order to produce a clock source of the internal logic circuits. The translator output has 50% duty ratio from small sinusoidal input such as TCXO which oscillates itself in poratable components. The circuit consists of positive and negative comparators, RS latch, charge pump, and reference vol- tage generator. It detects pulse width of the output waveform and feedbacks the control signal to the input com-parator. It detects pulse width of the output waveform and feedbacks the control signal to the input com-parator reference, producing output waveform with valid 50% duty ratio of the digital signal level. The designed level translator can be used as a sampling clock source of ADC, PLL and the colck source of the clock synthesizer. The circuit wasdesigned in a 0.8.mu.m analog CMOS technology with double metal, double poly, and BSIM3 circuit simulation model. From our experimental results, a stable operating characteristics of 50 +3% duty ratio was obtained from the sinusoidal input wave of 370 mV.

  • PDF

Study on the frequency of self-excited pulse jet

  • Wang, Jian;Li, Jiangyun;Guan, Kai;Ma, Tianyou
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.206-212
    • /
    • 2013
  • Self-excited pulse jet is a specific nozzle with a closed chamber which can change a continuous jet into a pulse one. Energy of the pulse jet can be output not only unevenly but also with multifrequency. With the peak pressure of pulse jet, the hitting power would be 2~2.5 times higher than that of continuous jet. In order to reveal the correlation between the self-excited pulse frequency and nozzle diameter ratio, nozzle spacing and operating pressure, the model of 3D unsteady cavitation model has been used. We found that with the same nozzle structure parameters and the different operating pressure, the self-excited frequency and the width of peak crest are different, but the wave profiles are similar. With FFT, we also found that the less bandwidth of amplitude in low frequency range will lead to the wider wave crest of outlet velocity in its time domain, and the larger force of the strike will be gained. By studying the St of self-excite nozzle, not only the frequency of a certain nozzle can be predicted, but also a nozzle structure with a certain frequency can be designed.

A Study on Evaluation of LED Lighting Environments for Energy Saving and Work Effectiveness (에너지 저감과 업무 효율성을 위한 LED 조명환경 평가에 대한 연구)

  • Kim, Hyung-Sun;Lim, Jae-Hyun;Lee, Kee-Sun;Kim, Kil-Hee;Jung, Hee-Chang;Kim, Jin Ho
    • Science of Emotion and Sensibility
    • /
    • v.18 no.2
    • /
    • pp.45-54
    • /
    • 2015
  • This study carried out an experiment to identify subject's work effectiveness and energy saving effect using LED light. Towards this end, this study configured nine various lighting environments in order to control PWM (Pulse Width Modulation) and illuminance (lux), which are the characteristics of LED light. The PWM ratio of LED light was set as R:G:B=1:1:1, R:G:B=4:1:5, and R:G:B=8:7:7, respectively, and illuminance (lux) was set as 400 lx, 700 lx, and 1000 lx, respectively. In addition, the indoor environment was set temperature $20-24^{\circ}C$, humidity 50%-60%, and the amount of clothing 1. This study analyzed work effectiveness and energy consumption in nine lighting environments, each. Error correction was performed for work effectiveness analysis, and cumulative power consumption was measured in each lighting environment for energy consumption analysis. According to experiment results through the lighting environments suggested in this study, accuracy and spent time effectiveness were good in 700lux and higher than 400lux. For spent time, the best effectiveness was revealed in the suggested PWM ratio, R:G:B=8:7:7. The lowest power consumption on each illuminance (lux) was revealed in the order of R:G:B=8:7:7, RGB=1:1:1, and R:G:B=4:1:5. Therefore, pulse-width modulation effect is proposed in this paper was found to affect the efficiency and energy saving.

Ceramic Microhole Machining using Excimer Laser (Excimer laser를 이용한 세라믹 미세구멍 가공)

  • Paik, Byoung-Man;Lee, Kun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.519-524
    • /
    • 2001
  • These days, $Al_[2}O_{3}$ ceramic use all over the industry because dynamic function and special properties to compare traditional material. But $Al_[2}O_{3}$ ceramic is high hardness and brittleness materials. For this reason, it is very difficult to process. Therefor, In this paper, it was investigated that laser process parameter, which can produce appropriate quality of $Al_[2}O_{3}$ ceramic microhole machining utilized Nd:YAG laser and Excimer laser.

  • PDF

Time-dependent Analysis of Optical Receivers Using Receiver Eigenmodes

  • Seo, Kyung Hee;Lee, Jae Seung;Willner, Alan E.
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.305-311
    • /
    • 2013
  • Using receiver eigenmodes, we perform a time-dependent analysis of optical receivers whose optical inputs are corrupted by the amplified spontaneous emission. We use Gaussian receivers for the analysis with Gaussian input pulses. We find the number of contributing eigenmodes increases as the measurement time moves from the pulse center towards the pulse edges at the output of the optical receiver's electrical filter. This behavior is dependent on the bandwidth ratio between the optical and the electrical filters as well as the input pulse's time width.

Characteristics of Pulse Waves in Various Age Categories and Applicability of Pulse Wave to Metabolic Syndrome Using Pen-type Piezoresistive Sensor (펜타입 압저항 센서를 활용한 연령별 맥파 특성 및 맥파의 대사증후군에의 적용 가능성 평가)

  • Ha, Ye-Jin;Cho, Mun-Young;Yun, Jong-Min;Jun, Kyu-Sang;Park, Soo-Jung;Shin, Sun-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.257-271
    • /
    • 2012
  • Objectives : The purpose of this study was to confirm that the pulse analyzer is useful for analyzing characteristics of variables of pulse waves in age categories, evaluating pulse waves of the metabolic syndrome group, compared with those of the non-metabolic syndrome group in Korean adults. Methods : The pulse wave variables were measured in Guan of all 1,056 subjects by the pulse analyzer, using a pen-type piezoresistive sensor. The physical measurement, blood test and survey were also performed by each subject. Results : In the age categories, height of pre-incisura (h2), height of tidal wave (h3), area of percussion wave (Aw), and width of percussion wave (w) increased in accordance with increase in age. While ratio of systolic period area (As) went up according to the increase of age, ratio of diastolic period area (Ad) went down. Radial augmentation index (R-AI), h2/h1, h3/h1, w/t and angle of percussion wave went up by aging, generally. Aw rate (Aw/At) also increased. Among the metabolic syndrome group, in the ages of 19 and 44, ratio of systolic period area (As) was higher and ratio of diastolic period area (Ad) was lower than in the non-metabolic group. w/t, Aw/At, and angle of percussion wave were higher than in the non-metabolic syndrome group. Among the metabolic syndrome group over the age of 60, height of pre-incisura (h2), height of tidal wave (h3), total area (At), area of percussion wave (Aw), radial augmentation index (R-AI), h2/h1 and h3/h1 were higher than in the non-metabolic syndrome group. Conclusions : The pulse analyzer is useful to analyze arterial stiffness in the age categories and in the metabolic syndrome group by some measures.

A new approach to enhancement of ground penetrating radar target signals by pulse compression (파형압축 기법에 의한 GPR탐사 반사신호 분해능 향상을 위한 새로운 접근)

  • Gaballah, Mahmoud;Sato, Motoyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.77-84
    • /
    • 2009
  • Ground penetrating radar (GPR) is an effective tool for detecting shallow subsurface targets. In many GPR applications, these targets are veiled by the strong waves reflected from the ground surface, so that we need to apply a signal processing technique to separate the target signal from such strong signals. A pulse-compression technique is used in this research to compress the signal width so that it can be separated out from the strong contaminated clutter signals. This work introduces a filter algorithm to carry out pulse compression for GPR data, using a Wiener filtering technique. The filter is applied to synthetic and field GPR data acquired over a buried pipe. The discrimination method uses both the reflected signal from the target and the strong ground surface reflection as a reference signal for pulse compression. For a pulse-compression filter, reference signal selection is an important issue, because as the signal width is compressed the noise level will blow up, especially if the signal-to-noise ratio of the reference signal is low. Analysis of the results obtained from simulated and field GPR data indicates a significant improvement in the GPR image, good discrimination between the target reflection and the ground surface reflection, and better performance with reliable separation between them. However, at the same time the noise level slightly increases in field data, due to the wide bandwidth of the reference signal, which includes the higher-frequency components of noise. Using the ground-surface reflection as a reference signal we found that the pulse width could be compressed and the subsurface target reflection could be enhanced.