• 제목/요약/키워드: Pulse time

검색결과 2,683건 처리시간 0.029초

Bovine Fetal Fibroblasts를 이용한 핵이식 및 세포융합에 관한 연구 (Production of Cloned Embryos by Nuclei Transfer and Electronic Cell Fusion from Bovine Fetal Fibroblasts)

  • 이병천;박종임;조종기;김기연;신수정;용환율;황우석
    • 한국수정란이식학회지
    • /
    • 제14권2호
    • /
    • pp.107-111
    • /
    • 1999
  • The present study was performed to evaluate the best electric fusion condition in nuclear transfer, Korean Native Cattle fibroblasts were used as nucleic donors. Oocytes from slaughterhouse were matured in vitro for 22 h and enucleated. Each individual cells were transferred into enucleated ocytes and reconstructed embryo were placed into the fusion chamber. In experiment 1, pulse were performed by altering pulse duration at 1. 75kv/cm, 1 time. When pulse duration is 30$mutextrm{s}$, fusion and development rates is higher than other conditions. In experiment 2, the effect of different pulse number were studied at the pulse duration 30$mutextrm{s}$ and the same pulse intensity. When pulse number was one, fusion rates were higher than other conditions. The fused embryos were moved to culture medium and assessed their development to blastocyst. These results showed that best fusion condition was 30$mutextrm{s}$ and one time. And the fibroblasts derived from Han Woo can be reprogrammed by nuclear transplantation and develop subsequently in vitro.

  • PDF

초고주파 집적회로 설계를 위한 펄스의 시간영역 분산 특성 해석 (Time Domain Analysis of Dispersion Characteristics of Pulse for MMIC Design)

  • 김기래
    • 한국정보통신학회논문지
    • /
    • 제17권8호
    • /
    • pp.1755-1760
    • /
    • 2013
  • 본 논문에서는 마이크로스트립 선로를 따라 펄스가 전송될 때 분산에 의한 펄스의 왜곡특성을 시간영역에서 해석 하였다. 전송선로의 구조, 유전율에 따른 분산특성을 비교 분석하였고, 구형펄스와 가우시안 펄스에 대해 펄스의 폭과 진폭, 그리고 전송속도에 따라 분산특성을 분석하였다. 구형 펄스의 경우 더 높은 고차 고조파 성분을 가지고 있기 때문에 이에 따른 저차 고조파 성분과의 위상 속도 차이가 선로를 따라 진행함에 따라 급격히 나타나서 분산이 심하게 나타났다. 본 연구의 결과는 MIC 또는 MMIC를 설계할 때 펄스전송에서 왜곡을 최소화하기 위해 펄스 폭, 선로의 폭, 기판의 높이 그리고 유전율을 결정하는데 유용하게 사용될 것이다.

Cascading 방식을 적용한 펄스발생기의 펄스전압 변성 및 Cascading 비율 특성 (A Study on the Pulse Peak Voltage and Cascading Ratio of Compact Pulse Generator using Cascading Method)

  • 정종한;김희제
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권7호
    • /
    • pp.329-333
    • /
    • 2001
  • The pulsed poser system has been widely used to many applications, such as E/P(Electrostatic Precipitator), DeNox/DeSOx power system, ozon generator, etc. A pulse energy efficiency for load depends on the rising time, peak value, pulse duration and impedance matching, etc. The pulse generator generally required for short pusle duration and high peak value was forced to consider its volume and economy. In this study, developing a compact pulse generator that applied for cascading method to be made of two pulse transformers, we compared cascading voltage with non cascading one by applying the pulse energy to load. Adopting cascading technique to pulse transformer, we found that average cascading voltage was about 60[%] of theoretical value. Maximum cascading ratio was calculated at 60 times compared with non cascading voltage.

  • PDF

POCS를 이용한 초광대역 무선통신의 펄스파형 설계 (Pulse Shape Design for Ultra-Wideband Radios Using Projections onto Convex Sets)

  • 이서영
    • 한국통신학회논문지
    • /
    • 제33권3A호
    • /
    • pp.311-318
    • /
    • 2008
  • FCC 스펙트럼을 만족하는 초광대역(UWB) 무선을 위한 새로운 펄스 파형을 제안한다. POCS(projections onto convex sets) 기술은 UWB 신호의 제반특성(FCC 스펙트럼 마스크하에서의 효율적인 스펙트럼 이용, 시간 제한성, 좋은 자기상관)의 제약 조건하에서 UWB 펄스의 시간 및 스펙트럼의 파형을 최적화한다. 시뮬레이션 결과에 의하면 펄스 파형의 모든 값에 대해 새로운 펄스 파형은 FCC 스펙트럼 마스크를 매우 효율적으로 만족할 뿐만 아니라 거의 동일한 자기상관함수를 갖고 있음을 보여준다. 또한 동일한 펄스폭에 대해 제안된 펄스의 절단된(즉 엄격히 시간 제한된) 펄스 파형은 이진 TH-PPM(time-hoping pulse position modulation) 시스템의 BER 성능에서 절단된 가우시안 모노싸이클(Gaussian monocycle)보다 우수하다. POCS 기술은 이 기술의 본질적인 설계 유연성 및 결합 최적화 능력 관점에서 UWB 펄스 파형 설계에 매우 효과적인 방법을 제공한다.

반작용휠 속도측정방법의 오차 분석 (Error Analysis of Reaction Wheel Speed Detection Methods)

  • 오시환;이혜진;이선호;용기력
    • Journal of Astronomy and Space Sciences
    • /
    • 제25권4호
    • /
    • pp.481-490
    • /
    • 2008
  • 반작용휠은 인공위성의 기동 및 자세제어에 사용되는 주요 구동기 중의 하나로 회전체의 속도를 변화시켜 발생하는 토크로 위성의 자세제어를 수행하므로 정밀한 자세제어를 위해서는 정확한 회전속도의 측정이 요구된다. 타코 펄스를 이용한 고속 회전모터의 대표적인 속도 측정방법에는 Elapsed-time측정방법과 Pulse-count측정방법의 두 가지가 있으며 이 연구에서는 반작용휠의 속도 측정을 하는 동안 발생할 수 있는 속도 측정의 오차 및 정밀도를 두 가지 방법에 대해 분석, 비교하였다. 그 결과 Pulse-count측정방법은 반작용휠의 등속 구동 시 회전속도에 상관없는 일정한 오차를 가지는데 비해 Elapsed-time측정방법은 회전속도가 작을수록 오차가 줄어드나 저속일 때 오차가 현저히 커질 수 있음을 해석적으로 확인하였다.

펨토초급 극초단 펄스레이저에 의해 가열된 실리콘 내의 열전달 특성에 관한 수치해석 (Numerical Analysis on Heat Transfer Characteristics in Silicon Boated by Picosecond-to-Femtosecond Ultra-Short Pulse Laser)

  • 이성혁;이준식;박승호;최영기
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1427-1435
    • /
    • 2002
  • The main aim of the present article is numerically to investigate the micro-scale heat transfer phenomena in a silicon microstructure irradiated by picosecond-to-femtosecond ultra-short laser pulses. Carrier-lattice non-equilibrium phenomena are simulated with a self-consistent numerical model based on Boltzmann transport theory to obtain the spatial and temporal evolutions of the lattice temperature, the carrier number density and its temperature. Especially, an equilibration time, after which carrier and lattice are in equilibrium, is newly introduced to quantify the time duration of non-equilibrium state. Significant increase in carrier temperature is observed for a few picosecond pulse laser, while the lattice temperature rise is relatively small with decreasing laser pulse width. It is also found that the laser fluence significantly affects the N 3 decaying rate of Auger recombination, the carrier temperature exhibits two peaks as a function of time due to Auger heating as well as direct laser heating of the carriers, and finally both laser fluence and pulse width play an important role in controlling the duration time of non-equilibrium between carrier and lattice.

펄스파 자왜 센서를 이용한 고정밀 액위 센서 시스템의 실현에 관한 연구 (Implementation of High Accurate Level Sensor System using Pulse Wave Type Magnetostriction Sensor)

  • 최우진;이준탁
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.395-400
    • /
    • 2013
  • In this paper, we introduce the implementation of high accurate level sensor system using the pulse wave type magnetostriction sensor. When a current pulse flows along the waveguide, the magnetic field also propagates towards the end of waveguide. When this magnetic field just passes the position of the magnet for level detection, the resultant magnetic field by these two magnetic fields makes a torsional reflected signal. This is used to calculate the time difference between a interrogation pulse wave and this torsional reflected signal. The key elements and characteristics were investigated to implement level sensor system based on this principle. We introduce a method to calculate the speed of ultrasonic reflected signal and how to make a model of sensing coil. In particular, we experiment with the characteristics of the torsional reflected signal according to the changes of the interrogation voltage and displacement. To make high accurate level sensor system, two methods were compared. One is to use the comparator and time counter, the other is STFT(Short Time FFT) which is capable of the time-frequency analysis.

T2 Relaxographic Mapping using 8-echo CPMG MRI Pulse Sequence

  • E-K. Jeong;Lee, S-H.;J-S. Suh;Y-Y wak;S-A. Shin;Y-K. Kwon;Y. Huh
    • 한국자기공명학회논문지
    • /
    • 제1권1호
    • /
    • pp.7-20
    • /
    • 1997
  • The mapping of the spin-spin relaxation time T2 in pixed-by-pixel was suggested as a quantitative diagnostic tool in medicine. Although the CPMG pulse sequence has been known to be the best pulse sequence for T2 measurement in physics NMR, the supplied pulse sequence by the manufacture of MRI system was able to obtain the maximum of 4 CPMG images. Eight or more images with different echo time TEs are required to construct a reliable T2 map, so that two or more acquisitions were required, which easily took more than 10 minutes. 4-echo CPMG imaging pulse sequence was modified to generate the maximum of 8 MR images with evenly spaced echo time TEs. In human MR imaging, since patients tend to move at least several pixels between the different acquisitions, 8-echo CPMG imaging sequence reduces the acquisition time and may remove any misregistration of each pixel's signal for the fitting T2. The resultant T2 maps using the theoretically simulated images and using the MR images of the human brain suggested that 8 echo CPMG sequence with short echo spacing such as 17∼20 msec can give the reliable T2 map.

  • PDF

Development of a real-time gamma camera for high radiation fields

  • Minju Lee;Yoonhee Jung;Sang-Han Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.56-63
    • /
    • 2024
  • In high radiation fields, gamma cameras suffer from pulse pile-up, resulting in poor energy resolution, count losses, and image distortion. To overcome this problem, various methods have been introduced to reduce the size of the aperture or pixel, reject the pile-up events, and correct the pile-up events, but these technologies have limitations in terms of mechanical design and real-time processing. The purpose of this study is to develop a real-time gamma camera to evaluate the radioactive contamination in high radiation fields. The gamma camera is composed of a pinhole collimator, NaI(Tl) scintillator, position sensitive photomultiplier (PSPMT), signal processing board, and data acquisition (DAQ). The pulse pile-up is corrected in real-time with a field programmable gate array (FPGA) using the start time correction (STC) method. The STC method corrects the amplitude of the pile-up event by correcting the time at the start point of the pile-up event. The performance of the gamma camera was evaluated using a high dose rate 137Cs source. For pulse pile-up ratios (PPRs) of 0.45 and 0.30, the energy resolution improved by 61.5 and 20.3%, respectively. In addition, the image artifacts in the 137Cs radioisotope image due to pile-up were reduced.

펄스 반복률에 의한 반도체 소자의 오동작 모드와 고장률에 관한 연구 (A Study on Malfunction Mode and Failure Rate Properties of Semiconductor by Impact of Pulse Repetition Rate)

  • 박기훈;방정주;김륙완;허창수
    • 한국전기전자재료학회논문지
    • /
    • 제28권6호
    • /
    • pp.360-364
    • /
    • 2015
  • Electronic systems based on solid state devices have changed to be more complicated and miniaturized as the electronic systems developed. If the electronic systems are exposed to HPEM (high power electromagnetics), the systems will be destroyed by the coupling effects of electromagnetic waves. Because the HPEM has fast rise time and high voltage of the pulse, the semiconductors are vulnerable to external stress factor such as the coupled electromagnetic pulse. Therefore, we will discuss about malfunction behavior and DFR (destruction failure rate) of the semiconductor caused by amplitude and repetition rate of the pulse. For this experiment, the pulses were injected into the pins of general purpose IC due to the fact that pulse injection test enables the phenomenon after the HPEM is coupled to power cables. These pulses were produced by pulse generator and their characteristics are 2.1 [ns] of pulse width, 1.1 [ns] of pulse rise time and 30, 60, 120 [Hz] of pulse repetition rate. The injected pulses have changed frequency, period and duty ratio of output generated by Timer IC. Also, as the pulse repetition rate increases the breakdown threshold point of the timer IC was reduced.