• Title/Summary/Keyword: Pulse test

Search Result 1,181, Processing Time 0.026 seconds

Comparison of Smart Watch Based Pulse Rate Variability with Heart Rate Variability (스마트워치에 기반한 맥박변이도를 이용한 심박변이도 예측 연구)

  • Kim, Changjin;Woo, Jihwan
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.87-93
    • /
    • 2018
  • The measurement of Heart Rate Variability (HRV) using electrocardiogram (ECG) signals has been used to predict fatigue and stress levels in a clinical environment, yet, owing to the complexity of such ECG systems, a domestic, nonclinical monitoring of HRV has not been a practical possibility. Recently though, Pulse Rate Variability (PRV) has been studied as an alternative to HRV. In this study, we investigated the reliability of measuring PRV by means of a smartwatch. The PRV results were compared to HRV results in similar test conditions, i.e. those obtained under rapid and deep-breathing scenarios. From the results obtained, it transpires that the Bland-Altman ratio and cross-correlation coefficients between several PRV and HRV parameters were highly correlated, thus suggesting that the results of measuring PRV using a smartwatch can be used to predict HRV in nonclinical environments.

Design and Implementation of Parabolic Speed Pattern Generation Pulse Motor Control Chip (포물선 가감속 패턴을 가지는 정밀 펄스 모터 콘트롤러 칩의 설계 및 제작)

  • Won, Jong-Baek;Choi, Sung-Hyuk;Kim, Jong-Eun;Park, Jone-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.284-287
    • /
    • 2001
  • In this paper, we designed and implemented a precise pulse motor control chip that generates the parabolic speed pattern. This chip can control step motor[1], DC servo[2] and AC servo motors at high speed and precisely. It can reduce the mechanical vibration to the minimum at the change point of a degree of acceleration. Because the parabolic speed pattern has the continuous acceleration change. In this paper, we present the pulse generation algorithm and the parabolic pattern speed generation. We verify these algorithm using visual C++. We designed this chip with VHDL(Very High Speed Integrated Circuit Hardware Description Language) and executed a logic simulation and synthesis using Synopsys synthesis tool. We executed the pre-layout simulation and post-layout simulation with Verilog-XL simulation tool. This chip was produced with 100 pins, PQFP package by 0.35 um CMOS process and implemented by completely digital logic. We developed the hardware test board and test program using visual C++. We verify the performance of this chip by driving the servo motor and the function by GUI(Graphic User Interface) environment.

  • PDF

Detection of Deep Subsurface Cracks in Thick Stainless Steel Plate

  • Kishore, M.B.;Park, D.G.;Jeong, J.R.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.312-316
    • /
    • 2015
  • Unlike conventional Eddy Current Test (ECT), Pulsed Eddy Current (PEC) uses a multiple-frequency current pulse through the excitation coil. In the present study, the detection of subsurface cracks using a specially designed probe that allows the detection of a deeper crack with a relatively small current density has been attempted using the PEC technique. The tested sample is a piece of 304 stainless steel (SS304) with a thickness of 30mm. Small electrical discharge machining (EDM) notches were put in the test sample at different depths from the surface to simulate the subsurface cracks in a pipe. The designed PEC probe consists of an excitation coil and a Hall sensor and can detect a subsurface crack as narrow and shallow as 0.2 mm wide and 2 mm deep. The maximum distance between the probe and the defect is 28 mm. The peak amplitude of the detected pulse is used to evaluate the cracks under the sample surface. In time domain analysis, the greater the crack depth the greater the peak amplitude of the detected pulse. The experimental results indicated that the proposed system has the potential to detect the subsurface cracks in stainless steel plates.

Comparison of Clinical Laboratory Data and Prevalence according to Arterial Stiffness in Stroke Patients

  • Jin, Bok Hee;Han, Min Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.46 no.4
    • /
    • pp.143-149
    • /
    • 2014
  • Pulse wave velocity (PWV) is used to non-invasively estimate the severity of arteriosclerosis by measuring the patient's arterial stiffness comparing with each normal reference range according to their ages. Increased arterial stiffness is closely related to both atherosclerosis and arteriosclerosis, which have been known for causes of cardiovascular disease and stroke, also negatively affects the prognosis and the re-occurrence in patients with stroke. The study is focused on how brachial-ankle pulse wave velocity (baPWV) is related to cardiovascular disease risk factors in patients with acute stroke. There were 114 subjects, 69 males and 45 females, all in their 60's and had PWV test for acute stroke. The results are as follows: the group with increased arterial stiffness showed significant increase in HbAlc, total cholesterol, RSBP (resting systolic blood pressure), CSBP (central systolic blood pressure) and CDBP (central diastolic blood pressure). Cross tabulation test showed that there was a significant relationship only between the group with increased arterial stiffness and diabetes mellitus (DM). Therefore, it might be useful for preventing re-occurrence and making a favorable prognosis to promptly adjust DM and hypertension-related risk factors in patients with acute stroke.

Effect of Foot Reflex Massage on Stress Responses, and Glucose Level of Non-Insulin Dependent Diabetes Mellitus Patients (발반사 마사지가 인슐린 비의존성 당뇨병 환자의 스트레스반응과 혈당에 미치는 효과)

  • Kim, Keum-Soon
    • The Korean Journal of Rehabilitation Nursing
    • /
    • v.6 no.2
    • /
    • pp.152-163
    • /
    • 2003
  • Purpose; This study was done to investigate the effect of foot reflexology on vital signs, general fatigue, foot fatigue, mood, and blood glucose levels in noninsulin dependent patients. Method: The Research design of this study was nonequivalent control group quasi-experimental design. 18 patients were assigned to the experimental group, 24 patients to the control group. The data were obtained diaberic patients with ambulatory endocrine outpatients clinic patients from 40 years old to 70 years old. Experimental groups received foot reflex massage for 30minutes three times/week every other days, and Control groups did not received foot reflex massage. The dependent variables were blood pressure, pulse rate, visual analogue scale for general fatigue, foot fatigue, mood, and blood sugar levels. Data were analyzed with $X^2$ test, t-test and repeated measure ANOVA at .0.05 level of significance. Results: There were significant difference in the pulse rate, general fatigue, foot fatigue and mood according to group and time between pre and post foot reflexology. But this research did not prove to decrease blood sugar levels. Conclusions : Foot reflexology can imorove pulse rate, general and foot fatigue, and mood status in diabetus patients. So further research need to explore the effect of decreasing of blood sugar levels.

  • PDF

A Study on Application of Non-Destructive Equation for the Estimation of Concrete Strength (콘크리트의 압축강도 추정을 위한 비파괴시험식의 활용성 검토에 관한 연구)

  • Kim, Moo-Han;Kwon, Young-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.129-136
    • /
    • 1999
  • In this paper, the new non-destructive equation will be proposed and evaluated in comparison to the other foreign's non-destructive equation. Through the comparisons cores strength of mock structure with compressive strength obtained from new non-destructive equation ; rebound hammer, ultra-sonic pulse velocity and combined method, it will be analyzed about application of non-destructive equation. The results are following. The new non-destructive equations follow ; (1) $F_c=9.5R{\cdot}N+62.5$ (2) $F_c=243Vp-739$ (3) $F_c=8.1R_o+205.3V_p-802$ where, $F_c$ : Compressive Strength, $R_o$ : Rebound Number. $V_p$ : Ultra-Sonic Pulse Velocity Trough the result of mock structure test, the combined method is superior to rebound method and ultra-sonic pulse velocity method in the estimation of concrete strength. In order to apply the non-destructive equation of concrete strength to the structures, it is necessary that we should be made process study on the non-destructive equation for estimation of concrete strength in the range, time and strength of application under long-term.

  • PDF

A Study of the Couplant Effects on Contact Ultrasonic Testing

  • Kim, Young-H.;Song, Sung-Jin;Lee, Sung-Sik;Lee, Jeong-Ki;Hong, Soon-Shin;Eom, Heung-Seop
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.621-626
    • /
    • 2002
  • The amplitude of a back-wall echo depends on the reflection coefficient of the interface between a transducer and a test material when using contact pulse-echo ultrasonic testing. A couplant is used to transmit ultrasonic energy across the interface, but has an influence on the amplitude of the pulse-echo signal. To investigate the couplant effect on pulse-echo ultrasonic testing, back-wall echoes are measured by using various couplants made of water and glycerine in a carbon and austenitic stainless steel specimens. The amplitude of the first back-wall echo and the apparent attenuation coefficient increases with the acoustic impedance of the couplant. The couplant having a higher value of the transmission coefficient is more effective for flaw detection. The reflection coefficient should be known in order to measure the attenuation coefficient of the test material.

Development of non-destructive testing method to evaluate the bond quality of reinforced concrete beam

  • Saleem, Muhammad;Almakhayitah, Abdulmalik Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.313-323
    • /
    • 2020
  • Non-destructive tests are commonly used in construction industry to access the quality and strength of concrete. However, till date there is no non-destructive testing method that can be adopted to evaluate the bond condition of reinforced concrete beams. In this regard, the presented research work details the use of ultra-sonic pulse velocity test method to evaluate the bond condition of reinforced concrete beam. A detailed experimental research was conducted by testing four identical reinforced concrete beam samples. The samples were loaded in equal increments till failure and ultra-sonic pulse velocity readings were recorded along the length of the beam element. It was observed from experimentation that as the cracks developed in the sample, the ultra-sonic wave velocity reduced for the same path length. This reduction in wave velocity was used to identify the initiation, development and propagation of internal micro-cracks along the length of reinforcement. Using the developed experimental methodology, researchers were able to identify weak spots in bond along the length of the specimen. The proposed method can be adopted by engineers to access the quality of bond for steel reinforcement in beam members. This allows engineers to carryout localized repairs thereby resulting in reduction of time, cost and labor needed for strengthening. Furthermore, the methodology to apply the proposed technique in real-world along with various challenges associated with its application have also been highlighted.

Evaluation on High Altitude Electromagnetic Pulse(HEMP) Protection Performance of Carbon Nanotube(CNT) Embedded Ultra-High Performance Concrete(UHPC) (탄소나노튜브(CNT)를 혼입한 초고성능 콘크리트(UHPC)의 고고도 전자기파(HEMP) 방호성능 평가)

  • Jung, Myungjun;Hong, Sung-gul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.151-161
    • /
    • 2019
  • In this study, to evaluate the High Altitude Electromagnetic Pulse(HEMP) protection performance of UHPC/CNT composites by the content of Carbon nanotubes(CNTs), Electromagnetic Shielding Effectiveness(SE) test was performed based on MIL-STD-188-125-1. And the results were verified by applying the Antenna theory. In the case of UHPC with a thickness of 200 mm mixed with 1 % CNT of cement weight, the SE was 28.98 dB at 10 kHz and 45.94 dB at 1 GHz. Then the Scabbing limit thickness for bullet proof was computed based on the result of compressive strength test which was 170 MPa, and it was examined whether it satisfied the HEMP protection criteria. As a result, the required HEMP shielding criteria were satisfied in all frequency ranges as well as the scabbing limit thickness was reduced by up to 43 % compared with that of ordinary concrete.

Correlation of rebound hammer and ultrasonic pulse velocity methods for instant and additive-enhanced concrete

  • Yudhistira J.U. Mangasi;Nadhifah K. Kirana;Jessica Sjah;Nuraziz Handika;Eric Vincens
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.41-55
    • /
    • 2024
  • This study aims to determine the characteristics of concrete as identified by Rebound Hammer and Ultrasonic Pulse Velocity (UPV) tests, focusing particularly on their efficacy in estimating compressive strength of concrete material. The study involved three concrete samples designed to achieve a target strength of 29 MPa, comprising normal concrete, instant concrete, and concrete with additives. These were cast into cube specimens measuring 150×150×150 mm. Compressive strength values were determined through both destructive and non-destructive testing on the cubic specimens. As a result, the non-destructive methods yielded varying outcomes for each correlation approach, influenced by the differing constituent materials in the tested concretes. However, normal concrete consistently showed the most reliable correlation, followed by concrete with additives, and lastly, instant concrete. The study found that combining Rebound Hammer and UPV tests enhances the prediction accuracy of compressive strength of concrete. This synergy was quantified through multivariate regression, considering UPV, rebound number, and actual compressive strength. The findings also suggest a more significant influence of the Rebound Hammer measurements on predicting compressive strength for BN and BA, whereas UPV and RN had a similar impact on predicting BI compressive strength.