• 제목/요약/키워드: Pulse reflection site

검색결과 3건 처리시간 0.018초

심혈관계 시뮬레이터를 이용한 맥파 반사지점 추정방법들의 비교 (Evaluation of methods for estimating the pulse reflection site with cardiovascular simulator)

  • 이주연;신상훈
    • 대한한의진단학회지
    • /
    • 제19권1호
    • /
    • pp.47-54
    • /
    • 2015
  • Objective Wave reflection is an important factor that determines the shape of the pulse wave. The purpose of this study is to compare the conventional method used for estimating the reflection site of pulse with a cardiovascular simulator. Methods: In this study, cardiovascular simulator with one elastic tube was used. The pressure and flow was measured simultaneously at three different points. The measured data were used to the conventional methods to estimate the pulse wave reflection site. The results were compared with the known length which were the distances from the measured points to the end of tube. Results & Conclusions: There is a significant error with the time domain method. While, the reflection site with the frequency domain method was similar to the actual reflection site.

반사 지점의 개수와 조건이 맥파에 미치는 영향 (Effect of Number and Condition of Reflection Site on Pulse Wave)

  • 이민우;장민;신상훈
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권1호
    • /
    • pp.8-13
    • /
    • 2020
  • To develop cardiovascular simulator capable of implementing pulse waves similar to the human body, accurate information about reflection wave is required. However, the conclusion is still not clear and various discussions are underway. In this study, the pulse wave velocity of the tube used in the experiment was first determined by measuring the pressure waves at two points in a single tube system with the experimental device to implement the pulse wave transmission of blood vessels, and the superposition time and characteristics of the reflection wave were confirmed. After that, an air chamber was set at the reflection site, and the effect of the change of air volume on the reflection wave was investigated. Finally, the effect of the number of branches connected to a single tube on the reflection wave was investigated. The superposition time of the reflection wave can be controlled by the air volume of the air chamber, and the magnitude of the reflection wave is influenced by the number of reflection sites that generate the reflection wave. The results of this study may be of practical assistance to simulator researchers who want to implement pulse wave similar to clinical data. It is expected that the more results similar to clinical are provided, the greater the scope of the simulator's contribution to clinical cardiovascular research.

광용적맥파(PPG)를 이용한 호흡수 측정에 있어서 동잡음을 이용한 정확도 향상 (Accuracy improvement of respiration rate based on photo-plethysmography by enhancing motion artifact)

  • 허영정;윤길원
    • 센서학회지
    • /
    • 제17권6호
    • /
    • pp.447-453
    • /
    • 2008
  • Respiration rate is one of the important vital signs. Photo-plethysmography (PPG) measurement especially on a finger has been widely used in pulse oximetry and also used in estimating respiration rate. It is well known that PPG contains respiration-induced intensity variation (RIIV) signal. However, the accuracy of finger PPG method has been controversial. We introduced a new technique of enhancing motion artifact by respiration. This was achieved simply by measuring PPG on the thorax. We examined the accuracy of these two PPG methods by comparing with two existing methods based on thoracic volume and nostril temperature changes. PPG sensing on finger tip, which is the most common site of measurement, produced 6.1 % error. On the other hand, our method of PPG sensing on the thorax achieved 0.4 % error which was a significant improvement. Finger PPG is sensitive to motion artifact and it is difficult to recover fully small respiratory signal buried in waveform dominated by absorption due to blood volume changes. Thorax PPG is poor to represent blood volumes changes since it contains substantial motion artifact due to respiration. Ironically, this inferior quality ensures higher accuracy in terms of respiration measurement. Extreme low-cost and small-sized LED/silicon detector and non-constrained reflection measurement provide a great candidate for respiration estimation in ubiquitous or personal health monitoring.