• Title/Summary/Keyword: Pulse radiation

Search Result 242, Processing Time 0.025 seconds

Development of Signal Process Circuit for PSAPD Detector (위치민감형 광다이오드 검출기의 신호처리회로 개발과 적용)

  • Yoon, Do-Kun;Lee, Won-Ho
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.315-319
    • /
    • 2012
  • The aim of this study was to develop a signal process circuit for a position sensitive avalanche photodiode detector. The circuit parts consisted of amplification, differential and peak/hold circuit. This research was the baseline to develop highly compact radiation detector. The signal was amplified by an amplification chip and its shape was changed in a differential circuit to minimize the pulse tailing. The peak/hold circuit detect the peak of the signal from the differential circuit and hold the amplitude of the peak for data acquisition. In order to test the intrinsic function of the circuit, the input signal was transmitted from a commercial pulse generator.

Analysis of Sapphire Microdrilling by a Nano Second Visible Laser Pulse (나노초 가시광 레이저 펄스를 이용한 사파이어 미세천공 공정의 해석)

  • O, Bu-Guk;Jeong, Yeong-Dae;Kim, Nam-Seong;Kim, Dong-Sik
    • Laser Solutions
    • /
    • v.12 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • Engineering ceramics as sapphire are widely used in industry owing to their superior mechanical and corrosion properties. However, micromachining of sapphire is a considerable challenge due to its transparency. Recently, direct ablation of sapphire has been demonstrated with a visible laser pulse at sufficiently high laser intensity. In this work, the theoretical model for pulsed laser ablation of sapphire is suggested and numerical analysis is carried out using the model. Sapphire ablation begins with plasma generation by the laser interaction with surface defects, impurities and contaminations in the initial stage of machining. Subsequent absorption of the visible laser beam can be explained by three mechanisms: metalization of sapphire surface due to the EUV radiation from the hot plasma, increments of surface roughness and temperature-dependent absorption coefficient. Comparison of the computation results with experimental observation indicates that the proposed model of sapphire is reasonable.

  • PDF

Electronic Circuit System of a Portable Rl Gauge for Compaction Control (성토다짐용 휴대용 Rl 계기의 전자회로 시스템)

  • 김기준
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.32-38
    • /
    • 1999
  • In this study, an objection is to develop a electronic circuit of a gauage using radioisotope for compaction control to be needed at public works The developed gauage makes use of radioisotope with the activity exempted from domestic atomic law and consists of measuring circuits for gamma-rays and thermal neutrons, a high voltage supply unit and a microprocessor. To obtain meaningful numbers of pulse counts, parallel five and tow circuits are provided for gamma-rays and thermal neutrons, respectively. Also, to minimize effects of natural environmental radiation and electrical noise, circuits are electrostatically shielded and pulses made by ripples are eliminated by taking frequency of high voltage supplied to the circuit and pulse height of ripples into consideration One-chip microprocessor is applied to process various counts, results are stored, Enough and meaningful numbers of pulses are counted with the prototype gauage for compaction control.

  • PDF

A Rapid Method for the Measurement of $^{222}Rn$ in Groundwater and Hot Spring Water using Ultra Low-Level Liquid Scintillation Counter and Pulse Shape Analysis (극저준위 액체섬광계수기와 파형분석법을 이용한 지하수 및 온천수중 $^{222}Rn$의 신속측정법)

  • Kim, Chang-Kyu;Kim, Cheol-Su
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.103-115
    • /
    • 1995
  • For the determination of $^{222}Rn$ in water by a very simple and time saving liquid scintillation counting method that does not require any chemical separation, an optimum analytical condition has been investigated. The optimum pulse shape analysis(PSA) level for the measurement of $^{222}Rn$ using LKB 1220 Quantulus liquid scintillation counter was 110 for Optiphase HiSafe3 cocktail and 90 for toluene-based cocktail. The counting efficiencies of $^{222}Rn$ in the window covering u spectra using Optiphase HiSafe3 cocktail were 282.2% for glass vial and 271.6% for Teflon vial, whereas the counting efficiencies in toluene-based cocktail were 262.3% and 247.5% for glass and Teflon vials, respectively. The minimum detectable activity(MDA) in the u window for a 60-min measurement with a Teflon vial using Optiphase HiSafe3 cocktail was $0.30Bq/{\iota}$. The analytical method studied from this work was also applied to the determination of $^{222}Rn$ in some groundwater and hot spring water samples.

  • PDF

A Study of the Inorganic Scintillator Properties for a Phoswich Detector (Phoswich 검출기 제작을 위한 무기 섬광체 특성 연구)

  • Lee, Woo-Gyo;Kim, Yong-Kyun;Kim, Jong-Kyung;Tarasov, V.;Zelenskaya, O.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.251-256
    • /
    • 2004
  • CsI(Tl), $CdWO_4(CWO),\;Bi_4Ge_3O_{12}(BGO)\;and\;Gd_2SiO_5:Ce(GSO)$ scintillators were studied to manufacture a phoswich detector. The maximum wavelengths of the CsI(Tl), CWO, BGO and GSO scintillators are 550 nm, 475 nm, 490 nm and 440 nm for the radioluminescence, and the absolute light outputs of the CsI(Tl), CWO, BGO and GSO scintillators are 54890 phonon/MeV, 17762 phonon/MeV, 8322 phonon/MeV and 8932 phonon/MeV with a neutral filter, and the decay time of the CsI(Tl), CWO, BGO and GSO scintillators is $1.3{\mu}s,\;8.17{\mu}s$, 213 ns and 37 ns by a single photon method. The phoswich detector which was manufactured with plastic and CsI(Tl) scintillators could separate the ${\beta}$ particle and ${\gamma}$ ray. The phoswich detector could also measure the pulse height spectra of the ${\beta}$ particle and ${\gamma}$ ray by a PSD method.

The Development of 63nm Diode Laser System for Photodynamic Therapy of Cancer (광역학적 암치료를 위한 635nm 다이오드 레이저 시스템 개발)

  • 임현수
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.319-328
    • /
    • 2003
  • The purpose of this paper is to develop a medical laser system using the semiconductor diode laser in order to photodynamic cancel therapy as a light source. The ideal light source for photodynamic therapy would be a homogeneous nondiverging light with variable spot size and specific wavelength with stability. After due consideration in this point, in this paper, we used a diode laser resonator of 635nm wavelength. The development laser system have a statistical laser out beam with accuracy control using the constant current control of method and clinic-friendly with compact. In order to protect the diode resonator from the over-current, the rush-current and electrical fault, we specially designed. The most importance therapeutic factor are the radiation mode for cancer therapy. So we developed the radiation mode of CW(Continuous Wave), long pulse, short pulse, and burst pulse and can adjust the exposure time from several milli-second to several minute. The experimental result shows that laser beam power was increased linear from 10mW to 300mW according to the increasing input current and the increasing exposure time. The developed new compact diode laser system have a stability of output power and specific wavelength with easy control and transportable for many applications of PDT.

Wireless Triggering Pulse Generation for Digital X-ray Imaging System (디지털 x-ray 영상시스템을 위한 무선 트리거 발생기)

  • Ko, Dae-Sik;Lee, Jae-Cheol;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.163-169
    • /
    • 2007
  • In this paper, we propose a method of trigger pulse generation to capture the image on time by making a synchronization between the x-ray generator and digital x-ray image acquisition system. we designed a wireless trigger pulse generation circuit to make a synchronization between x-ray generator and digital image acquisition system and analysis its performance. When it starts to detect a certain level of x-ray radiation or above from the air, this method starts to generate a ACQ_START signal to indicate the timing for image acquisition starting from digital image acquisition system. Hence, when it starts to detect under certain level of x-ray signal from the air, this method starts to generate a ACC_END signal to indicate the timing for image acquisition stop from digital image acquisition system. Image acquisition is activated only this time between ACQ_START and ACQ_END signal. By doing this wireless detecting of x-ray signal from remote, we can get more accurate timing for capturing the x-ray image and any type of x-ray generator can be connected to digital image acquisition system, regards of wired protocol. This makes easy installation. We could get 3.5 line pair / mm resolution at 20 mAs of x-ray level with resolution chart. This is same or better image comparing to conventional wired result.

  • PDF

Characteristics of time-resolved optically stimulated luminescence (OSL) on Paleolithic paleosol quartz (구석기 고토양층 석영의 시간분해 광자극 냉광 특성 연구)

  • Hong, Duk-Geun;Kim, Ki-Bum;Kim, Myung-Jin
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.7-13
    • /
    • 2018
  • In this study, we measured the time-resolved optically stimulated luminescence (TR-OSL) of Paleolithic paleosol quartz and evaluated its lifetime. Considering the lifetime dependence on the preheating applied after irradiation, the radiation exposure, and the optical pulse stimulation, we found that the optimum measurement condition for determining the lifetime of paleosol quartz was the optical pulse stimulation at a dwelling time of $250{\mu}s$, pulse width of $10{\mu}s$, and sweep number of 100,000, without preheating after 100 Gy of irradiation. Based on the dependence of the lifetime on the reading temperature, the thermal quenching activation energy ${\Delta}E$ and thermal assistance activation energy $E_a$ were evaluated as $0.60{\pm}0.14eV$ and $0.053{\pm}0.029eV$, respectively. These values were in good agreement with those reported in the literature. Therefore, we concluded that the resulting kinetic parameters for paleosol quartz are quite reliable.

Sterilization of Escherichia coli Based on Nd: YAG Resonator with a Pulsed Xenon Flashlamp

  • Kim, Hee-Je;Kim, Dong-Jo;Hong, Ji-Tae;Xu, Guo-Cheng;Lee, Dong-Gil
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.275-279
    • /
    • 2011
  • Sterilization of Escherichia coli (E. coli) is examined using a unique pulsed ultra-violet (UV) elliptical reactor based on Nd:YAG laser resonator, UV radiation from a pulsed xenon flashlamp. The light from the discharge has a broadband emission spectrum extending from the UV to the infrared region with a rich UV contained. Sterilization method by using the UV light is fast, environment-friendly and it does not cause secondary pollution. A Nd:YAG laser resonator having elliptical shape has advantage of concentrating the radiation of the UV light at two foci as the quart sleeve filled with E. coli. The primary objective of this research is to determine the important parameters such as pulse per second (pps), the applied voltage for sterilizing E. coli by using an UV elliptical reactor. From the experiment result, the sterilization effect of UV elliptical reactor is better than that of UV cylindrical reactor, and it can be 99.9% of sterilization at 800V regardless of the pps within 10 minutes.

Characteristics of Laser-Guided DC Discharge by Nd: YAG Laser at Low Pressure

  • Lee, Dong-Hoon;Kim, Hee-Je
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.3
    • /
    • pp.316-321
    • /
    • 1998
  • In recent years, concern has been raised about the technique of controlling electrical breakdown by using laser in many fields. Especially, laser has attracted much attention in the Electro-Discharge Macining(EDM) because of its many merits. Therefore, this research has been performed to obtain fundamental data relevant to discharge processing by using a pulsed Nd:YAG laser. The experiments of laser-guided dc discharge by laser radiation have been carried out at low air pressure ranging from 0.2 to 20 torr. The minimum laser-guided dc discharge voltage V\ulcorner at the given pressures P and distances D between an anode and a cathode was measured. It is found that the minimum laser-guided dc discharge voltage is much lower than the natural discharge voltage V\ulcorner\ulcorner, and the values of V\ulcorner and V\ulcorner as a function of P.D has a similar tendency. The laser output energy Eout decreases with input pulse duration tp increasing, and the more the value of tp increases, the higher that of V\ulcorner is obtained because the number of photons during the discharge time N decreases with t\ulcorner increasing. There is the time lag frequently when the discharge by laser radiation is misguided under the condition of the applied voltage less than V_G.min.

  • PDF