• Title/Summary/Keyword: Pulse load

Search Result 530, Processing Time 0.026 seconds

Effect of Spiral Turbulent Ring on Detonation Performances of Acetylene-Oxygen Mixture (나선형 난류고리가 아세틸렌-산소 혼합기의 데토네이션파 성능에 미치는 영향)

  • Son, Min;Seo, Chanwoo;Lee, Keon Woong;Koo, Jaye;Smirnov, N.N.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.9-15
    • /
    • 2013
  • An effect of a spiral turbulent ring, so-called Shchelkin spiral, on a detonation performance was studied experimentally for acetylene and oxygen mixture. A couple of dynamic pressure transducers were used to calculate a detonation wave velocity by a time difference between two pressure peaks. In addition, impulse was measured by a load cell and the impulse was used to analyze the spiral effect on the detonation performance. A CFD analysis was adopted to calculate mass flow rates of the propellants and the minimum filling time. The maximum velocity and pressure were measured at the equivalence ratio of 2.4, and the measured values showed similar trend to C-J conditions calculated from CEA. For the shorter chamber with the short spiral, the maximum detonation velocity was appeared. In contrast, the longer chamber without the spiral showed the maximum thrust performance.

Concrete pavement monitoring with PPP-BOTDA distributed strain and crack sensors

  • Bao, Yi;Tang, Fujian;Chen, Yizheng;Meng, Weina;Huang, Ying;Chen, Genda
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.405-423
    • /
    • 2016
  • In this study, the feasibility of using telecommunication single-mode optical fiber (SMF) as a distributed fiber optic strain and crack sensor was evaluated in concrete pavement monitoring. Tensile tests on various sensors indicated that the $SMF-28e^+$ fiber revealed linear elastic behavior to rupture at approximately 26 N load and 2.6% strain. Six full-scale concrete panels were prepared and tested under truck and three-point loads to quantify the performance of sensors with pulse pre-pump Brillouin optical time domain analysis (PPP-BOTDA). The sensors were protected by precast mortar from brutal action during concrete casting. Once air-cured for 2 hours after initial setting, half a mortar cylinder of 12 mm in diameter ensured that the protected sensors remained functional during and after concrete casting. The strains measured from PPP-BOTDA with a sensitivity coefficient of $5.43{\times}10^{-5}GHz/{\mu}{\varepsilon}$ were validated locally by commercial fiber Bragg grating (FBG) sensors. Unlike the point FBG sensors, the distributed PPP-BOTDA sensors can be utilized to effectively locate multiple cracks. Depending on their layout, the distributed sensors can provide one- or two-dimensional strain fields in pavement panels. The width of both micro and major cracks can be linearly related to the peak strain directly measured with the distributed fiber optic sensor.

Controls on KSTAR Superconducting Poloidal Field (PF) Magnets

  • Hahn, Sang-Hee;Kim, K.H.;Choi, J.H.;Ahn, H.S.;Lee, D.K.;Park, K.R.;Eidietis, N.W.;Leuer, J.A.;Walker, M.L.;Yang, H.L.;Kim, W.C.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.4
    • /
    • pp.23-28
    • /
    • 2008
  • As a part of the plasma control system (PCS) for the first plasma campaign of KSTAR, seven sets of fast feedback control loop for the superconducting poloidal field magnet power supply (PF MPS) have been implemented. A special real-time digital communication interface has been developed for the simultaneous exchanges of the current/voltage data from the 7 sets of 12-thyristor power supplies in a 200 microsecond control cycle. Preliminary power supply tests have been performed before actual cooldown of the device. A $29mH/50m{\Omega}$ solenoid dummy has been fabricated for a series of single power supply tests. Connectivity and response speed of the plasma control system have been verified. By changing hardware cabling, this load was also used to estimate mutual inductance coupling effects of two geometrically adjacent solenoid coils on each power supply. After the cooldown was complete, each pair of the up/down symmetric PF coils has been serially connected and tested as part of the device commissioning process. Bipolar operation and longer pulse attempts have been investigated. The responses of the coils and power supplies corresponding to the plasma magnetic controls in plasma discharges are also analyzed for the future upgrades.

Design of power and phase feedback control system for ion cyclotron resonance heating in the Experimental Advanced Superconducting Tokamak

  • L.N. Liu;W.M. Zheng;X.J. Zhang;H. Yang;S. Yuan;Y.Z. Mao;W. Zhang;G.H. Zhu;L. Wang;C.M. Qin;Y.P. Zhao;Y. Cheng;K. Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.216-221
    • /
    • 2024
  • Ion cyclotron range of frequency (ICRF) heating system is an important auxiliary heating method in the experimental Advanced Superconducting Tokamak (EAST). In EAST, several megawatts of power are transmitted with coaxial transmission lines and coupled to the plasma. For the long pulse and high power operation of the ICRF waves heating system, it is very important to effectively control the power and initial phase of the ICRF signals. In this paper, a power and phase feedback control system is described based on field programmable gate array (FPGA) devices, which can realize complicated algorithms with the advantages of fast running and high reliability. The transmitted power and antenna phase are measured by a power and phase detector and digitized. The power and phase feedback control algorithms is designed to achieve the target power and antenna phase. The power feedback control system was tested on a dummy load and during plasma experiments. Test results confirm that the feedback control system can precisely control ICRF power and antenna phase and is robust during plasma variations.

Channel Changes and Effect of Flow Pulses on Hydraulic Geometry Downstream of the Hapcheon Dam (합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향)

  • Shin, Young-Ho;Julien, Pierre Y.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.579-589
    • /
    • 2009
  • Hwang River in South Korea, has experienced channel adjustments due to dam construction. Hapcheon main dam and re-regulation dam. The reach below the re-regulation dam (45 km long) changed in flow regime, channel width, bed material distribution, vegetation expansion, and island formation after dam construction. The re-regulation dam dramatically reduced annual peak flow from 654.7 $m^3$/s to 126.3 $m^3$/s and trapped the annual 591 thousand $m^3$ of sediment load formerly delivered from the upper watershed since the completion of the dam in 1989. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that non-vegetated active channel width narrowed an average of 152 m (47% of 1982) and non-vegetated active channel area decreased an average of 6.6 km2 (44% of 1982) between 1982 and 2004, with most narrowing and decreasing occurring after dam construction. The effects of daily pulses of water from peak hydropower generation and sudden sluice gate operations are investigated downstream of Hapcheon Dam in South Korea. The study reach is 45 km long from the Hapcheon re-regulation Dam to the confluence with the Nakdong River. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that the non-vegetated active channel width narrowed an average of 152 m (47% reduction since 1982). The non-vegetated active channel area also decreased an average of 6.6 $km^2$ (44% reduction since 1982) between 1982 and 2004, with most changes occurring after dam construction. The average median bed material size increased from 1.07 mm in 1983 to 5.72 mm in 2003, and the bed slope of the reach decreased from 0.000943 in 1983 to 0.000847 in 2003. The riverbed vertical degradation is approximately 2.6 m for a distance of 20 km below the re-regulation dam. It is expected from the result of the unsteady sediment transport numerical model (GSTAR-1D) steady simulations that the thalweg elevation will reach a stable condition around 2020. The model also confirms the theoretical prediction that sediment transport rates from daily pulses and flood peaks are 21 % and 15 % higher than their respective averages.

The Characteristics Analysis and Design of High-Frequency Isolated Type ZVZCS PS-PWM DC-DC Converter with Fuel Cell Generation System (연료전지 발전시스템에 적용된 고주파 절연형 ZVZCS PS-PWM DC-DC 컨버터의 설계 및 특성 해석)

  • Suh, Ki-Young;Mun, Sang-Pil;Kim, Dong-Hun;Lee, Hyun-Woo;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.21-28
    • /
    • 2006
  • In this paper, the proposed full-bridge high frequency isolated zoo voltage and zero current switching phase shifted pulse width modulation(ZVZCS PS-PWM)DC-DC converter among fuel cell generation system consist of 1.2[kW] fuel cell of Nexa Power Module, full-bridge DC-DC converter to boost the fuel cell low voltage($28{\sim}43[%]$) to 380[VDC] and a single phase full-bridge inverter is implemented to produce AC output(220[VAC], 60[Hz]). A tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed full-bridge high frequency isolated ZVZCS PS-PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of $93{\sim}97[%]$ is obtained over the wide output voltage regulation ranges and load variations.

Comparison of Karasek's Job Content Questionnaire and Korea Occupational Stress Scale (Karasek의 Job Content Questionnaire와 Korea Occupational Stress Scale의 비교 연구)

  • Lee, Jong-Bin;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.72-78
    • /
    • 2015
  • According to the report of the WHO, workers have been exposed to much job strain such as job load, responsibility, role, interpersonal conflict etc. In Korea, studies on job strain started to become active from 1990s and now hundreds of studies are actively under going or publishing so that the studies are contributing to development and improvement of job strain. Representative measurement models of job strain are Job Strain Model of Karasek, Job Stress Model of NOISH, Korea Occupational Stress Scale, JSQ(Job Stress Questionnaire), K-OSI(Korea Version of Occupational Stress Inventory) etc. (Lee Kwan-Suk, 2012 ; KOSHA, 2003). Among them, Job Strain Model of Karasek had been loved by many researchers of job strain before Korea Occupational Stress Scale was developed. Job Strain Model of Karasek had been fitted to Korean style and then, used to analyze job strain of Korean people so that this Scale highly contributed to seeking relationship with cardiovascular disease, musculoskeletal disease caused by job, smoking, drug, alcohol poisoning, and pulse(Lee Kwan-Suk, 2012). But as this Model was studied and developed based on foreign culture and life pattern, a model fit to Korea was developed to measure job strain for Korean people, which is Korea Occupational Stress Scale now most frequently used in measuring job strain. Accordingly, after this study made questionnaire survey about same population using the two methods used most frequently in measuring job strain, the study investigated what features appeared, what correlations appear between two models, and comparatively analyzed characteristics each independent and dependent variable. Based on this, the study aimed to exactly express job strain of Korean people. The subjects of the study were a population of 233, and Karasek's Questionnaire and KOSS's Questionnaire were surveyed at the same time. The results were analyzed by statistical program to obtain significant difference between two models. Four particular groups were divided with Job Strain Model of Karasek and the four particular groups were measured with Korea Occupational Stress Scale. And job strain come from combination of two models was measured, with which new comparative analysis method was suggested.

Operatonal characteristics of the PLS linac vacuum system (PLS 선형가속기 진공계의 운전특성)

  • 김임경;박용정;김경렬;남궁원
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.269-277
    • /
    • 1996
  • The vacuum systems of PLS linac provides average pressure of $2.6\times 10^{-6}$Pa under high power microwave of 54 MW peak with 4.1 $\mu \textrm s$ pulse width and 10 Hz repetition rates. The base pressure of system is$2.4\times 10^{-6}$Pa with 45$^{\circ}C$ cooling water. The outgassing rate of the system is decreased from $3.0\times 10^{-11}Torr-l/sec-\textrm{cm}^2$ at the initial stage after installation to $1\times 10^{-12}Torr-l/sec-\textrm{cm}^2$ at present. Total accumulated microwave energy dose is about 140 GJ per module. All ion pumps are working under saturated regime and effective pumping speeds of 60 I/s, 230 I/s ion pumps are 45 I/s, 65 I/s, 140 I/s under the operating range. Main problems occurred in recent year are troubles of ion pump controller and vacuum gauge controller, vacuum leak of energy doubler window and electron gun ceramic, and water leak in the dummy load of acceleraing columns. Total of 41 troubles with 140. 8 hours down time give good system availability of 98%. Down time can be reduced by high power waveguide valves and water dummy loads under development, and then availability is expected to be increased up to 99.5%.

  • PDF

An Adaptive Polling Algorithm for IEEE 802.15.6 MAC Protocols (IEEE 802.15.6 맥 프로토콜을 위한 적응형 폴링 알고리즘 연구)

  • Jeong, Hong-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.587-594
    • /
    • 2012
  • IEEE 802.15.6 standard technology is proposed for low-power wireless communication in, on and around body, where vital signs such as pulse, blood pressure, ECG, and EEG signals are transmitted as a type of data packet. Especially, these vital signs should be delivered in real time, so that the latency from slave node to hub node can be one of the pivotal performance requirements. However, in the case of IEEE 802.15.6 technology data retransmission caused by transmission failure can be done in the next superframe. In order to overcome this limitation, we propose an adaptive polling algorithm for IEEE 802.15.6 technology. The proposing algorithm makes the hub to look for an appropriate time period in order to make data retransmission within the superframe. Through the performance evaluation, the proposing algorithm achieves a 61% and a 73% latency reduction compared to those of IEEE 802.15.6 technology in the environment of 70% traffic offered load with 10ms and 100ms superframe period. In addition, the proposing algorithm prevents bursty traffic transmission condition caused by mixing retransmission traffic with the traffic reserved for transmission. Through the proposing adaptive polling algorithm, it will be possible to transmit time-sensitive vital signs without severe traffic delay.

Effect of misting and wallowing cooling systems on milk yield, blood and physiological variables during heat stress in lactating Murrah buffalo

  • Yadav, Brijesh;Pandey, Vijay;Yadav, Sarvajeet;Singh, Yajuvendra;Kumar, Vinod;Sirohi, Rajneesh
    • Journal of Animal Science and Technology
    • /
    • v.58 no.1
    • /
    • pp.2.1-2.10
    • /
    • 2016
  • Background: Heat stress adversely affects the physiological and metabolic status, and the productive performance of buffalo. Methods: The present study was conducted to explicate the effect of misting and wallowing cooling strategies during heat stress in lactating Murrah buffalo. The study was conducted for three months (May-July) of which first two months were hot dry and last month was hot humid. Eighteen lactating buffaloes, offered the same basal diet, were blocked by days in milk, milk yield and parity, and then randomly allocated to three treatments: negative control (no cooling), cooling by misting, and cooling by wallowing. Results: The results showed higher (P < 0.05) milk yield in buffaloes of misting and wallowing group compared to control during the experimental period however wallowing was found more (P < 0.05) effective during July (hot humid period). Both the treatments resulted into significant (P < 0.05) reduction in rectal temperature (RT) and respiratory rate (RR) compared to control animals during study period whereas wallowing was found to be effective on pulse rate (PR) only during July. Both treatments were resulted in mitigating the heat stress mediated decrease in packed cell volume (PCV), lymphocytopnoea and neutrophilia whereas decrease in total erythrocyte count (TEC) and monocytes was only mitigated by wallowing. Heat load induced alteration in serum creatinine and sodium concentration was significantly (P < 0.05) ameliorated by misting and wallowing whereas aspartate aminotransferase, alkaline phosphatase and superoxide dismutase activity, and reactive oxygen species concentration could be normalized neither by misting nor by wallowing. The significant (P < 0.05) increment in serum cortisol and prolactin levels observed in June and July period in control animals was significantly (P < 0.05) prevented by misting and wallowing. Conclusions: It can be concluded that misting and wallowing were equally effective in May and June (hot dry period) whereas wallowing was more effective during hot humid period in preventing a decline in milk production and maintaining physiological, metabolic, endocrine and redox homeostasis.