• Title/Summary/Keyword: Pulse Torque

Search Result 126, Processing Time 0.024 seconds

Torsional Vibration Phenomenon due to Pulse Torque of Variable Speed Induction Motor on Rotating Systems (가변 속도 유도 전동기에서 발생한 펄스 토크에 의한 회전축계의 비틀림진동 현상)

  • Lee, Donchool;Vuong, QuangDao;Nam, Taekkun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.414-419
    • /
    • 2015
  • Recently, commercial ships and other specialized vessels with electric propulsion system employ variable speed induction motor as its prime mover. The wide application of electrical motors also includes being the main drive system in most industrial machineries. However, during its start-up, shutdown, and brake switch operation, excessive torque variation are generated. As such, flexible coupling are installed in order to reduce the transmitted torque fluctuation to the driven side. In this paper, the pulse torque generated by an variable speed induction motor was analyzed theoretically and through measurement of torsional vibration. Induction motor with inverter on marine propulsion system and industrial compressor were used as experimental subjects. The study confirmed that pulse torque are generated regardless of motor speed and interpreted as a vibration source of the whole system. Results presented herein can be adopted as the basis in future amendment of inspection classifying body regulations.

A Direct Torque Control Characteristics of SRM using PWM Approach (PWM 기법을 적용한 SRM의 직접토크 제어 특성)

  • Lee, Dong-Hee;Wang, Huijun;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.179-185
    • /
    • 2008
  • In this paper, an advanced torque control scheme of SRM using DITC(Direct Instantaneous Torque Control) and PWM(pulse width modulation) is presented. Different from conventional DITC method, proposed method uses one or two switching modes at every sampling time, instead of only one switching mode. The duty ratio of the phase switch is regulated according to the torque error and simple control rules of DITC. Moreover the sampling time of control can be extended, which allows implementation on low cost micro-controllers. A simple calculation of PWM can assure a constant switching frequency with an excellent control performance. The proposed control method is verified by the simulations and experimental results.

Feed-Forward Approach in Stator-Flux-Oriented Direct Torque Control of Induction Motor with Space Vector Pulse-Width Modulation

  • Kizilkaya, Muhterem Ozgur;Gulez, Kayhan
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.994-1003
    • /
    • 2016
  • Two major obstacles in the utilization of electrical vehicles are their price and range. The collaboration of direct torque control (DTC) with induction motor (IM) is preferred for its low cost, easy implementation, and parameter independency. However, in terms of edges, the method has drawbacks, such as variable switching frequency and undesired current harmonic distortion. These drawbacks result in acoustic noise, reduced efficiency, and electromagnetic interference. A feed-forward approach for stator-flux-oriented DTC with space vector pulse-width modulation is presented in in this paper. The outcome of the proposed method is low current harmonic distortion with fixed switching frequency while preserving the torque performance and simple application feature of basic DTC. The method is applicable to existing and forthcoming IM drive systems via software adaptation. The validity of the proposed method is confirmed by simulation and experimental results.

Harmonic and Torque Ripple Reduction of Electric Propulsion System using 12-Pulse Diode Rectifier by Auxiliary Supply (보조 전원을 이용한 12 펄스 다이오드 정류기를 사용하는 추진시스템의 고조파 및 토크 리플 저감)

  • Kim, Jong-Su;Seo, Dong-Hoan;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.1
    • /
    • pp.66-70
    • /
    • 2013
  • The input current of three phase rectifier which is mainly used in the propulsion system of the electric propulsion ship includes a variety of low order harmonics. To reduce these harmonics, the power conversion system, used in the large vessels which high power is required, is currently used the rectifiers of 12-pulse output, but it still has a problem that occurs $12{\pm}1$ harmonics. Also, in the case of the direct torque control technique which is widely used for the speed and torque control, the torque ripple is severe and the input current of motor has greatly included harmonics by the switching of the inverter. In order to reduce harmonics and improve the performance of torque control, this paper presents that the auxiliary supply assisted into the 12-pulse rectifier of the electric propulsion system using direct torque control technique. We confirm the validity of the proposed method through the simulation under the environment of a real vessel system.

The Analysis of the torque ripple of Traction Motor in the VSI system (전압원 인버터 파형에 따른 견인 전동기의 맥동 토오크 해석)

  • Rhee, Kee-Hong;Yun, Shin-Yong;Kim, Yong;Baek, Su-Hyun;Kang, Ho-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.145-147
    • /
    • 1996
  • Traction Motor is being transferred to the squirrel cage induction motor from D.C motor, by the improved power semiconductors like GTO, IGBT, etc. In the Induction Motor, inverter system must be used for delivering variable voltage variable frequency. But, by pulsating in the system the harmonics would be produced, and that cause the torque ripple and enfeeble the dynamic characteristics of the motor. So, to use the inverter system, we should take the torque ripple into consideration. To minimize the torque ripple in the VSI fed Traction Motor, the optimal pulsating was presented in this paper. By using the SPWM(Sinusoidal Pulse Width Modulation) method, feeding the appropriate pulse, we can minimize the torque ripple and improve the transient response.

  • PDF

Driving of Switched Reluctance Motor to Reduce Torque Ripple (맥동 토오크 저감을 위한 스위치드 리럭턴스 전동기 구동에 관한 연구)

  • 오인석;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.49-56
    • /
    • 1997
  • Switched Reluctance Motors(SRMs) have a considerable inherent torque ripple due to the driving characteristics of pulse current waveform and the nonlinear variation inductance profile. This paper describes a current shape characteristics to effect a torque ripple reduction, and one pulse mode switching control method is proposed to minimize torque ripple of a switched reluctance motor regardless of speed and load condition by regulating tow parameters, such as, advance angle and exciting voltage. The experiments are performed to verify the capability of proposed switching method on 6/4 salient type SRM.

  • PDF

Energy Model Based Direct Torque Control of Induction Motor Using IP Controllers

  • Mannan, Mohammad Abdul;Murata, Toshiaki;Tamura, Junji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.405-411
    • /
    • 2012
  • This paper deals with direct torque control of an induction motor (IM) with constant switching frequency. The desired torque is obtained from the speed controller which is designed using the IP controller. Decoupling control of torque and flux is developed based on the energy model of IM using the IP controller strategies. The desired d-axis and q-axis stator voltage components are obtained from the designed controller, which decouples torque and flux. The constant switching frequency can be applied using space-vector pulse width modulation, since the desired stator voltage can be known from the decoupling torque and flux controllers. In order to achieve stable operation of the proposed IP controllers, the gains of the controllers are chosen by setting the poles in negative (left) half of s-plane and by choosing the rising time for the response of the step function. The proposed controller was verified in simulations using Matlab/Simulink and results have proven excellent performance. It was found that the proposed IP controllers can provide excellent performance to track the desired torque and speed and to reject the disturbance of load.

An Improvement of SRM Vibration by using of Self-Tunning Control (자기동조 이론을 이용한 SRM의 진동소음 특성개선)

  • 정승주;여진기;오인석;성세진
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.80-84
    • /
    • 1996
  • A Switched Reluctance Motor(SRM) has a torque pulsating inherently due to characteristics of pulse driving. A torque pulsating causes noise and sound vibration. To reduce a noise, a torque pulsating shall be controlled. Many efforts to make flat-topped current has been proposed to minimize a torque pulsating up to now. This paper proposed a control scheme to minimize the vibration of SRM by controlling the vibration directly by using of self-turning technique. The experimental results show that the proposed control scheme is effective in reducing the torque ripple and noise.

  • PDF

Torque Reduction of SRM Using An Advanced Direct Instantaneous Torque Control Scheme (개선된 직접순시토크제어기법을 이용한 SRM의 토크리플 저감)

  • Wang, Huijun;Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.148-149
    • /
    • 2007
  • In this paper, an advanced torque control scheme of SRM using DITC(Direct Instantaneous Torque Control) and PWM(pulse width modulation) is investigated. The proposed DITC-PWM regulates a duty ratio of the phase switch according to the torque error and simple control rules of DITC without any hysteresis bandwidth. The proposed control method is verified by the simulations and experimental results.

  • PDF

Adaptive Neuro-Fuzzy Ingerence based Torque Model of SRM (적응 뉴로퍼지 추론기법에 의한 SRM의 토오크모델)

  • 홍정표;박성준;홍순일;김철우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.279-284
    • /
    • 1999
  • Although the switched reluctance motor (SRM) has a several advantages such as simple magnetic structure, robustness, wide range of speed characteristics and simple driving, it has a considerable inherent torque ripple and speed variation duet to the driving characteristics of pulse current waveform and the nonlinear inductance profile. The high torque ripple and speed variation inhibits wide application. The minimization of the torque ripple is very important in high performance servo drive applications, which require smooth operation with minimum torque pulsations. This paper presents the new SRM torque modeling technique for the control of instantaneous torque. The SRM is modeled by the database of torque profiles for every small variation in currents and rotor angles, which is inferred from the several measured data by the adaptive neuro-fuzzy inference technique. Simulation results demonstrating the effectiveness of proposed torque modeling technique are presented.

  • PDF